Reduced graphene oxide/titanium dioxide nanotube (rGO/TNT) composites have superior properties, such as a large surface area, extraordinary mechanical strength, high carrier mobility, etc. However, the biosafety and biocompatibility of these composites, such as their influences on cell viability and cell functions, which are of paramount importance, are still not fully addressed. In this study, rGO/TNT nanocomposites were successfully synthesized through a modified hydrothermal treatment method. Then, the interactions between the rGO/TNT nanocomposites and Raw264.7 mouse monocyte-macrophage cells were further investigated. The results show that the rGO/TNT nanocomposites could be internalized by Raw264.7 cells and mainly gathered inside the cytoplasm. No rGO/TNT nanocomposites were observed in the nucleus. Moreover, the rGO/TNT nanocomposites exhibited low cytotoxicity toward Raw264.7 cells at a lower dose, though they may exhibit cytotoxicity to some extent at very high concentrations. In addition, the uptake of the nanocomposites influenced the cell cytoskeleton organization, while the cell adhesion and migration abilities were also impaired.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jmbbm.2017.10.014 | DOI Listing |
Nanomaterials (Basel)
November 2018
Chemical Engineering Department, Malayan Colleges Laguna, Pulo-Diezmo Rd. Cabuyao City, Laguna 4025, Philippines.
Composites of synthesized reduced graphene oxide (rGO) and titanium dioxide nanotubes (TNTs) were examined and combined at different mass proportions (3:1, 1:1, and 1:3) to develop an electrochemical double layer capacitor (EDLC) nanocomposite. Three different combination methods of synthesis-(1) TNT introduction during GO reduction, (2) rGO introduction during TNT formation, and (3) TNT introduction in rGO sheets using a microwave reactor-were used to produce nanocomposites. Among the three methods, method 3 yielded an EDLC nanomaterial with a highly rectangular cyclic voltammogram and steep electrochemical impedance spectroscopy plot.
View Article and Find Full Text PDFJ Mech Behav Biomed Mater
January 2018
Department of Polymer Materials, Zhejiang Sci-Tech University, Hangzhou 310018, China. Electronic address:
Reduced graphene oxide/titanium dioxide nanotube (rGO/TNT) composites have superior properties, such as a large surface area, extraordinary mechanical strength, high carrier mobility, etc. However, the biosafety and biocompatibility of these composites, such as their influences on cell viability and cell functions, which are of paramount importance, are still not fully addressed. In this study, rGO/TNT nanocomposites were successfully synthesized through a modified hydrothermal treatment method.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!