Synergistic effects of anaerobic co-digestion of whey, manure and fish ensilage.

Bioresour Technol

Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, P. O. Box 5003, N-1432 Ås, Norway. Electronic address:

Published: February 2018

Biogas production potential of the three feedstocks fish ensilage, manure and whey was evaluated using biochemical methane potential (BMP) tests. Since anaerobic digestion of single substrates may be inefficient due to imbalances in the carbon-nitrogen ratio, degree of biodegradability and/or due to lack of nutrients needed by the microbial community, co-digestion of these substrates was also assessed, revealing synergistic effects and a particularly good effect of combining manure with fish ensilage. In this latter case, methane yields were up to 84% higher than the weighted average of the methane yields obtained with the individual substrates. The type of substrate was the dominating cause of variation in methane production rates and yields.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biortech.2017.09.169DOI Listing

Publication Analysis

Top Keywords

fish ensilage
12
synergistic effects
8
manure fish
8
methane yields
8
effects anaerobic
4
anaerobic co-digestion
4
co-digestion whey
4
whey manure
4
ensilage biogas
4
biogas production
4

Similar Publications

The efficiency of native and non-native starter cultures in the production of bio-silage using composite waste from fish and vegetables was studied. An ensilage experiment was conducted in a natural way (without starter culture) of composite waste (fish to vegetable at 80 to 20%) to isolate the native fermentative microflora. An Enterococcus faecalis strain isolated from the natural ensilage of composite waste showed higher efficiency over other commercial LAB strains generally used for ensilation.

View Article and Find Full Text PDF

Unlabelled: In this study, ensilaging of herring () filleting co-products was taken from lab-scale to pilot scale (1500 L) while monitoring the protein degree of hydrolysis (DH) and lipid oxidation. Subsequently, the possibility of recovering fish oil and protein hydrolysates using batch centrifugation at different g-forces/times was investigated. Around 38% DH was recorded after 2-day pilot-scale ensilaging of herring co-products at ambient temperature (i.

View Article and Find Full Text PDF

Farms utilizing sewage sludge and manure in their agronomic plant production are recognized as potential hotspots for environmental release of antibiotics and the resulting promotion of antibiotic resistance. As part of the circular economy, the use of biogas digestates for soil fertilizing is steadily increasing, but their potential contribution to the spreading of pharmaceutical residues is largely unknown. Digestates can be produced from a variety of biowaste resources, including sewage sludge, manure, food waste, and fish ensilage.

View Article and Find Full Text PDF

Provided high product quality, ensilaging can be used to valorize fish filleting co-products into a silage suitable for food applications. However, a documented challenge for products from hemoglobin-rich fish raw materials is the high susceptibility to lipid oxidation, calling for stabilization by antioxidants. In a comparison among different rosemary-containing antioxidants and isoascorbic acid, we here found that the commercial mixture Duralox MANC-213 (MANC) provided the best protection against peroxide value and 2-thiobarbituric acid reactive substances (TBARS) development during ensilaging of herring filleting co-products (0-7 days, 22 °C), and also during subsequent heat-treatment (30 min, 85 °C).

View Article and Find Full Text PDF

The aims of this study were to investigate the role of hemoglobin (Hb) in lipid oxidation development during ensilaging of herring filleting co-products, and, to inhibit this reaction by pre-incubating the co-products in water or physiological salt, with/without different antioxidants. Results showed that both peroxide value (PV) and 2-thiobarbituric acid reactive substances (TBARS) gradually increased during 7 days of ensilaging at 22 °C in absence of antioxidants. The increase in TBARS was proportional to the Hb levels present, while PV was less affected.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!