Study Question: What is the role of metachronal and synchronous sliding in sperm flagellar motility?

Summary Answer: Both metachronal and oscillatory synchronous sliding are essential for sperm flagellar motility, while the change in mode of synchronous sliding between the non-oscillatory synchronous sliding of a specific pair of the doublet microtubules and the oscillatory synchronous sliding between most pairs of doublet microtubules modulates the sperm flagellar motility.

What Is Known Already: Metachronal and synchronous sliding of doublet microtubules are involved in sperm flagellar motility and regulation of these sliding movements controls flagellar bend formation.

Study Design, Size, Duration: To study the regulatory mechanisms of metachronal and synchronous sliding in flagellar movement of golden hamster spermatozoa, changes in these sliding movements during hyperactivation were examined by measuring the angle of the tangent to the flagellar shaft with reference to the central axis of the sperm head (the shear angle) along the flagellum. Golden hamster spermatozoa were obtained from the caudal epididymis of five sexually mature golden hamsters. Results from three experiments were averaged. The number of spermatozoa analyzed is 15 activated sperm, 22 hyperactivated sperm and 20 acrosome-reacted sperm.

Participants/materials, Setting, Methods: For detailed field-by-field analysis, an individual flagellar image was tracked automatically using the Autotrace module of image analysis software. The coordinate values of the flagellar shaft were used to calculate the shear angle, which is proportional to the amount of microtubule sliding at any given position along the flagellum. The maximum shear angles of metachronal and synchronous sliding were obtained from the mean shear angles between the maximum shear angles of pro-hook bends and the absolute values of the minimum shear angles of anti-hook bends, which represent the amplitude of a set of successive shear angle curves, with 3-12 shear curves covering one beat cycle of sperm flagellar movement. Asymmetry of flagellar waves was expressed by the mean shear angle between the maximum shear angle of pro-hook bends and the minimum shear angle of anti-hook bends at 100 μm from the head-midpiece junction.

Main Results And The Role Of Chance: The asymmetrical flagellar movements observed in the activated (non-hyperactivated) and hyperactivated spermatozoa were characterized by the non-oscillatory synchronous sliding of a specific pair of the doublets; the large asymmetrical flagellar movement in the hyperactivated spermatozoa was generated by the large non-oscillatory synchronous sliding. Both the metachronal and synchronous sliding increased during the hyperactivation; however, the large symmetrical flagellar movement of the acrosome-reacted spermatozoa was characterized by the oscillatory synchronous sliding between most pairs of doublets. These results demonstrated that the metachronal and synchronous sliding are involved in generation and modulation of sperm flagellar motility; however, two types of synchronous sliding, non-oscillatory and oscillatory sliding, modulate the sperm flagellar motility by enhancing the sliding of a specific pair of the doublets or the sliding between most pairs of the doublets.

Large Scale Data: None.

Limitations, Reasons For Caution: This is an indirect study of the metachronal and synchronous sliding of doublet microtubules. Studies based on the direct observation of behavior of dynein are needed to clarify the sliding microtubule theory of flagellar movement of spermatozoa.

Wider Implications Of The Findings: Both the metachronal and oscillatory synchronous sliding of doublet microtubule generate and modulate sperm flagellar motility, while the change in mode of synchronous sliding between the non-oscillatory synchronous sliding and oscillatory synchronous sliding modulates the sperm flagellar motility. The coordination between these sliding leads to various types of flagellar and ciliary motility, including the asymmetrical beating in flagellar and ciliary movement and planar or helical beating in sea urchin spermatozoa. Moreover, the finding that the metachronal sliding and two types of synchronous sliding generate and modulate the flagellar motility will open a new avenue for quantitative analysis of flagellar and ciliary motility.

Study Funding And Competing Interest(s): The authors have no conflict of interest and no funding to declare.

Download full-text PDF

Source
http://dx.doi.org/10.1093/molehr/gax055DOI Listing

Publication Analysis

Top Keywords

synchronous sliding
84
sperm flagellar
40
flagellar motility
32
metachronal synchronous
32
sliding
30
flagellar
24
shear angle
24
synchronous
21
doublet microtubules
20
oscillatory synchronous
20

Similar Publications

Bulk methods to fractionate organelles lack the resolution to capture single-cell heterogeneity. While microfluidic approaches attempt to fractionate organelles at the cellular level, they fail to map each organelle back to its cell of origin-crucial for multiomics applications. To address this, we developed VacTrap, a high-throughput microfluidic device for isolating and spatially indexing single nuclei from mammalian cells.

View Article and Find Full Text PDF

Tertiary lymphoid structures (TLS) in the tumor microenvironment are prognostically beneficial in many solid cancer types. Reports on TLS in high-grade serous tubo-ovarian carcinoma (HGSC) are few, and the prognostic impact is unclear. We investigated mature TLS (mTLS), immature TLS (iTLS) and lymphoid aggregates (LA) in primary adnexal tumors (PTs) and synchronous omental/peritoneal metastases (pMets) of HGSC.

View Article and Find Full Text PDF

Direct-drive servo systems are extensively applied in biomimetic robotics and other bionic applications, but their performance is susceptible to uncertainties and disturbances. This paper proposes an adaptive disturbance rejection Zeta-backstepping control scheme with adjustable damping ratios to enhance system robustness and precision. An iron-core permanent magnet linear synchronous motor (PMLSM) was employed as the experimental platform for the development of a dynamic model that incorporates compensation for friction and cogging forces.

View Article and Find Full Text PDF

Tunable Mechanically Interlocked Semi-Crystalline Networks.

Angew Chem Int Ed Engl

December 2024

Key Labs for Advanced Materials, Institute of Fine Chemicals, East China University of Science and Technology, Meilong Road 130, 200237, Shanghai, CHINA.

High-performance polymers based on dynamic chemistry have been widely explored for multi-field advanced applications. However, noncovalent sacrifice bond mediated energy dissipation mechanism causes a trade-off between mechanical toughness and resilience. Herein, we achieved the synchronous boost of seemingly conflicting material properties including mechanical robustness, toughness and elasticity via the incorporation of mechanical chemistry into traditional semi-crystalline networks.

View Article and Find Full Text PDF

Self-oscillation, a control approach inspired by biological systems, demonstrates an autonomous, continuous, and regular response to constant external environmental stimuli. Until now, most self-oscillation systems have relied on a static external environment that continuously supplies energy, while materials typically absorb ambient energy only intermittently. In this article, we propose an innovative self-oscillation of liquid crystal elastomer (LCE) fiber-slide system driven by a self-flickering light source, which can efficiently regulate the energy input in sync with the self-oscillating behavior under constant voltage.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!