The analysis of the dynamic behaviour of genome-scale models of metabolism (GEMs) currently presents considerable challenges because of the difficulties of simulating such large and complex networks. Bacterial GEMs can comprise about 5000 reactions and metabolites, and encode a huge variety of growth conditions; such models cannot be used without sophisticated tool support. This article is intended to aid modellers, both specialist and non-specialist in computerized methods, to identify and apply a suitable combination of tools for the dynamic behaviour analysis of large-scale metabolic designs. We describe a methodology and related workflow based on publicly available tools to profile and analyse whole-genome-scale biochemical models. We use an efficient approximative stochastic simulation method to overcome problems associated with the dynamic simulation of GEMs. In addition, we apply simulative model checking using temporal logic property libraries, clustering and data analysis, over time series of reaction rates and metabolite concentrations. We extend this to consider the evolution of reaction-oriented properties of subnets over time, including dead subnets and functional subsystems. This enables the generation of abstract views of the behaviour of these models, which can be large-up to whole genome in size-and therefore impractical to analyse informally by eye. We demonstrate our methodology by applying it to a reduced model of the whole-genome metabolism of Escherichia coli K-12 under different growth conditions. The overall context of our work is in the area of model-based design methods for metabolic engineering and synthetic biology.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6781584 | PMC |
http://dx.doi.org/10.1093/bib/bbx096 | DOI Listing |
mSystems
January 2025
Biosystems and Bioprocess Engineering, IIM-CSIC, Vigo, Spain.
During batch fermentation, a variety of compounds are synthesized, as microorganisms undergo distinct growth phases: lag, exponential, growth-no-growth transition, stationary, and decay. A detailed understanding of the metabolic pathways involved in these phases is crucial for optimizing the production of target compounds. Dynamic flux balance analysis (dFBA) offers insight into the dynamics of metabolic pathways.
View Article and Find Full Text PDFToxicol Sci
January 2025
Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Development Command, Fort Detrick, MD, 21702, USA.
Because the liver plays a vital role in the clearance of exogenous chemical compounds, it is susceptible to chemical-induced toxicity. Animal-based testing is routinely used to assess the hepatotoxic potential of chemicals. While large-scale high-throughput sequencing data can indicate the genes affected by chemical exposures, we need system-level approaches to interpret these changes.
View Article and Find Full Text PDFNat Commun
January 2025
Institute of Marine Science and Technology, Shandong University, Qingdao, China.
Lignin, as the abundant carbon polymer, is essential for carbon cycle and biorefinery. Microorganisms interact to form communities for lignin biodegradation, yet it is a challenge to understand such complex interactions. Here, we develop a coastal lignin-degrading bacterial consortium (LD), through "top-down" enrichment.
View Article and Find Full Text PDFNPJ Syst Biol Appl
January 2025
The Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, 94608, USA.
Genome-scale metabolic models (GSMM) are commonly used to identify gene deletion sets that result in growth coupling and pairing product formation with substrate utilization and can improve strain performance beyond levels typically accessible using traditional strain engineering approaches. However, sustainable feedstocks pose a challenge due to incomplete high-resolution metabolic data for non-canonical carbon sources required to curate GSMM and identify implementable designs. Here we address a four-gene deletion design in the Pseudomonas putida KT2440 strain for the lignin-derived non-sugar carbon source, p-coumarate (p-CA), that proved challenging to implement.
View Article and Find Full Text PDFCell Syst
January 2025
Center for Bioinformatics and Computational Medicine, Ann Arbor, MI 48109, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA; Program in Chemical Biology, University of Michigan, Ann Arbor, MI, USA; Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA. Electronic address:
While proliferating cells optimize their metabolism to produce biomass, the metabolic objectives of cells that perform non-proliferative tasks are unclear. The opposing requirements for optimizing each objective result in a trade-off that forces single cells to prioritize their metabolic needs and optimally allocate limited resources. Here, we present single-cell optimization objective and trade-off inference (SCOOTI), which infers metabolic objectives and trade-offs in biological systems by integrating bulk and single-cell omics data, using metabolic modeling and machine learning.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!