Bone marrow-derived mesenchymal stem cells (BMMSCs) have been consider as a promising therapy in fibrotic diseases. Experimental models suggest that BMMSCs may be used as an alternative therapy to treat chemical- or physical-induced pulmonary fibrosis. We investigated the anti-fibrotic potential of BMMSCs in an experimental model of lung fibrosis by infection with Paracoccidioides brasiliensis. BMMSCs were isolated and purified from BALB/c mice using standardized methods. BALB/c male mice were inoculated by intranasal infection of 1.5x106 P. brasiliensis yeasts. Then, 1x106 BMMSCs were administered intra venous at 8th week post-infection (p.i.). An additional group of mice was treated with itraconazole (ITC) two weeks before BMMSCs administration. Animals were sacrificed at 12th week p.i. Histopathological examination, fibrocytes counts, soluble collagen and fibrosis-related genes expression in lungs were evaluated. Additionally, human fibroblasts were treated with homogenized lung supernatants (HLS) to determine induction of collagen expression. Histological analysis showed an increase of granulomatous inflammatory areas in BMMSCs-treated mice. A significant increase of fibrocytes count, soluble collagen and collagen-3α1, TGF-β3, MMP-8 and MMP-15 genes expression were also observed in those mice. Interestingly, when combined therapy BMMSCs/ITC was used there is a decrease of TIMP-1 and MMP-13 gene expression in infected mice. Finally, human fibroblasts stimulated with HLS from infected and BMMSCs-transplanted mice showed a higher expression of collagen I. In conclusion, our findings indicate that late infusion of BMMSCs into mice infected with P. brasiliensis does not have any anti-fibrotic effect; possibly because their interaction with the fungus promotes collagen expression and tissue remodeling.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5659794 | PMC |
http://dx.doi.org/10.1371/journal.pntd.0006006 | DOI Listing |
Adv Sci (Weinh)
January 2025
Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Orthopedic Institute, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215000, China.
Extracellular matrix (ECM) derived from mesenchymal stem cells regulates antioxidant properties and bone metabolism by providing a favorable extracellular microenvironment. However, its functional role and molecular mechanism in mitochondrial function regulation and aged bone regeneration remain insufficiently elucidated. This proteomic analysis has revealed a greater abundance of proteins supporting mitochondrial function in the young ECM (Y-ECM) secreted by young bone marrow-derived mesenchymal stem cells (BMMSCs) compared to the aged ECM (A-ECM).
View Article and Find Full Text PDFElife
January 2025
Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel.
Trained immunity (TI) is the process wherein innate immune cells gain functional memory upon exposure to specific ligands or pathogens, leading to augmented inflammatory responses and pathogen clearance upon secondary exposure. While the differentiation of hematopoietic stem cells (HSCs) and reprogramming of bone marrow (BM) progenitors are well-established mechanisms underpinning durable TI protection, remodeling of the cellular architecture within the tissue during TI remains underexplored. Here, we study the effects of peritoneal Bacillus Calmette-Guérin (BCG) administration to find TI-mediated protection in the spleen against a subsequent heterologous infection by the Gram-negative pathogen Typhimurium (.
View Article and Find Full Text PDFActa Biomater
January 2025
Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland; Department of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland; Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland; Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin, Ireland. Electronic address:
Functional cartilaginous tissues can potentially be engineered by bringing together numerous microtissues (µTs) and allowing them to fuse and re-organize into larger, structurally organized grafts. The maturation level of individual microtissues is known to influence their capacity to fuse, however its impact on the long-term development of the resulting tissue remains unclear. The first objective of this study was to investigate the influence of the maturation state of human bone-marrow mesenchymal stem/stromal cells (hBM-MSCSs) derived microtissues on their fusion capacity and the phenotype of the final engineered tissue.
View Article and Find Full Text PDFFront Parasitol
April 2024
INRS- Centre Armand-Frappier Santé Biotechnologie, Université du Québec, Laval, QC, Canada.
Extracellular vesicles released by the protozoan parasite display immunomodulatory properties towards mammalian immune cells. In this study, we have evaluated the potential of extracellular vesicles derived from the non-pathogenic protozoan towards the development of a vaccine adjuvant. As a proof of concept, we expressed in a codon-optimized SARS-CoV-2 Spike protein fused to the secreted acid phosphatase signal peptide in the N-terminal and to a 6×-His stretch in the C-terminal.
View Article and Find Full Text PDFCommun Biol
January 2025
Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China.
The osteogenic differentiation of bone marrow-derived mesenchymal stem cells (BMSCs) is key for bone formation, and its imbalance leads to osteoporosis. Forkhead Box Protein G1 (FOXG1) is associated with osteogenesis, however, the effect of FOXG1 on osteogenesis of BMSCs and ovariectomy (OVX)-induced bone loss is unknown. In our study, FOXG1 expression in BMSCs increases after osteogenic induction.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!