We performed pot experiments with canola plants (Brassica campestris L.) to evaluate the effect of eight soil conditioners on the amendment of vanadium (V)-contaminated soil based on analysis of the growth of canola plants and the uptake, bioaccumulation, and translocation of heavy metals. Tested soil conditioners included polyacrylamide (PAM), sepiolite, humic acid (HAC), peat, sludge compost (SC), bentonite, lime, and fly ash. Results from the analysis of the growth of canola plants and the analysis of variance showed that the best soil conditioners for V-contaminated soil were 0.05-0.1 wt% PAM, 1 wt% peat, 1 wt% HAC, and 1 wt% SC; moderately effective soil conditioners included sepiolite and lime. The best combination of soil conditioners was 0.1 wt% PAM, 1 wt% HAC, and 0.15 wt% lime, in addition of 1% ZVI, which increased the biomass and height of canola plants by 1.18-fold and 59.49%, respectively. We conclude that the best combination of soil conditioners determined from this study is promising for mitigating V contamination in soil.

Download full-text PDF

Source
http://dx.doi.org/10.1080/15226514.2017.1365345DOI Listing

Publication Analysis

Top Keywords

soil conditioners
28
canola plants
20
soil
11
pot experiments
8
experiments canola
8
plants brassica
8
brassica campestris
8
v-contaminated soil
8
analysis growth
8
growth canola
8

Similar Publications

The agricultural sector of any country plays a pivotal role in its economy. Irrigation and the provision of appropriate nutrient levels in soil are essential for optimizing plant growth and enhancing crop productivity. To support the increasing need for food due to the growing population worldwide, synthetic fertilizers have been widely used in the agricultural sector.

View Article and Find Full Text PDF

Designing sustainable soil conditioners: Nanocomposite-based thermoplastic starch for enhanced soil health and crop performance.

Int J Biol Macromol

January 2025

Science and Technology Center for Sustainability (CCTS), Federal University of São Carlos (UFSCar), João Leme dos Santos, km 110, 18052-780 Sorocaba, SP, Brazil. Electronic address:

The growing demand for sustainable solutions in agriculture, driven by global population growth and increasing soil degradation, has intensified the search for sustainable soil conditioners. This study investigated the impact of adding nanoclay (NC) and nano lignin (NL) to thermoplastic starch (TPS) on its physical, chemical, and thermal properties, its effectiveness as a soil conditioner, and its resistance to UV-C degradation. TPS nanocomposites were prepared with varying NC (3 %, 5 %, 7 %) and NL (0.

View Article and Find Full Text PDF

Amide modified cellulose-g-poly acrylic acid as a supple superabsorbent for water retention and soil conditioner.

Int J Biol Macromol

January 2025

Department of Chemistry, University of Isfahan, P.O. Box 81746-73441, Isfahan, Iran. Electronic address:

Acrylamide has high hydrophilic properties due to the presence of hydrophilic amide functional groups and is frequently used to synthesize superabsorbents. However, the toxic and carcinogenic properties of acrylamide have caused environmental concerns. The main goal of this paper is the synthesis of superabsorbent with high water absorption from biodegradable and biocompatible cellulose polymer containing amide groups in the backbone of it instead of grafting harmful acrylamide monomers to cellulose.

View Article and Find Full Text PDF

Continuous cropping problems constitute threats to perennial plant health and survival. Soil conditioners have the potential to enhance plant disease resistance in continuous cropping systems. However, how microbes and metabolites of the rhizosphere respond to soil conditioner addition remains largely unknown, but this knowledge is paramount to providing innovative strategies to enhance plant adaptation in continuous cropping systems.

View Article and Find Full Text PDF

The study investigated the application of humic acids (HAs) and a combination of humic acids and amino acids (HA+AA) in maize under field conditions. Based on preliminary data in the literature, the aim was to investigate the effects of the two plant conditioning compounds on plant physiological parameters. In addition to measuring plant physiological parameters in the field, a complete transcriptome analysis was performed to determine exactly which genes were expressed after the treatments and in which physiological processes they play a role.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!