Bioinspired Antioxidant Defense System Constructed by Antioxidants-Eluting Electrospun F127-Based Fibers.

ACS Appl Mater Interfaces

State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022, P. R. China.

Published: November 2017

Cells were continuously exposed to oxidative damage by overproduction of reactive oxygen species (ROS) when they contacted implanted biomaterials. The strategy to prevent cells from oxidative injures remains a challenge. Inspired by the antioxidant defense system of cells, we constructed a biocompatible and ROS-responsive architecture on the substrate of styrene-b-(ethylene-co-butylene)-b-styrene elastomer (SEBS). The strategy was based on fabrication of architectures through reactive electrospinning of mixture including SEBS, acylated Pluronic F127, copolymer of poly(ethylene glycol) diacrylate and 1,2-ethanedithiol (PEGDA-EDT), and antioxidants (AA-2G) and ROS-triggered release of AA-2G from microfibers to detoxify the excess ROS. We demonstrated that the stable and hydrophilic architecture was constructed by phase separation of SEBS/F127 components and cross-linking between polymer chains during electrospinning; the ROS-responsive fibers controlled the release of AA-2G and the interaction of AA-2G with ROS reduced the oxidative damage to cells. The bioinspired architecture not only reduced mechanical and oxidative damage to cells but also maintained normal ROS level for physiological hemostasis. This work provides basic principles to design and develop antioxidative biomaterials for implantation in vivo.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.7b12395DOI Listing

Publication Analysis

Top Keywords

oxidative damage
12
antioxidant defense
8
defense system
8
release aa-2g
8
damage cells
8
cells
5
bioinspired antioxidant
4
system constructed
4
constructed antioxidants-eluting
4
antioxidants-eluting electrospun
4

Similar Publications

Free radicals have been implicated in the pathogenesis of cancer along with cardiovascular, neurodegenerative, pulmonary and inflammatory disorders. Further, the relationship between oxidative stress and disease is distinctively established. Clinical trials using anti-oxidants for the prevention of disease progression have indicated some beneficial effects.

View Article and Find Full Text PDF

Purpose: Diabetes mellitus is a global health challenge that leads to severe complications, negatively impacting overall health, life expectancy, and quality of life. Herbal medicines, valued for their accessibility and therapeutic benefits with minimal side effects, have been promoted as potential treatments. Managing conditions like diabetes, characterized by free radical production and cytokine-driven inflammation, is vital due to the active components in plants that exert direct pharmacological effects.

View Article and Find Full Text PDF

Background: Huntington disease (HD), a neurodegenerative autosomal dominant disorder, is characterized by involuntary choreatic movements with cognitive and behavioral disturbances. Up to now, no therapeutic strategies are available to completely ameliorate the progression of HD. has various pharmacologic effects such as antioxidant and anti-inflammatory activities.

View Article and Find Full Text PDF

Neuroprotective role of sialic-acid-binding immunoglobulin-like lectin-11 in humanized transgenic mice.

Front Neurosci

December 2024

Institute of Reconstructive Neurobiology, Medical Faculty and University Hospital of Bonn, University of Bonn, Bonn, Germany.

Brain aging is a chronic process linked to inflammation, microglial activation, and oxidative damage, which can ultimately lead to neuronal loss. Sialic acid-binding immunoglobulin-like lectin-11 (SIGLEC-11) is a human lineage-specific microglial cell surface receptor that recognizes -2-8-linked oligo-/polysialylated glycomolecules with inhibitory effects on the microglial inflammatory pathways. Recently, the gene locus was prioritized as a top tier microglial gene with potential causality to Alzheimer's disease, although its role in inflammation and neurodegeneration remains poorly understood.

View Article and Find Full Text PDF

Sepsis-induced cardiomyopathy (SICM) is a life-threatening complication of sepsis characterized by myocardial dysfunction. SICM significantly increases mortality rates in sepsis. Despite its clinical relevance, SICM lacks a unified definition and standardized diagnostic criteria, complicating early identification and treatment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!