Organic/inorganic hybrid materials are attracting considerable attention in the biomedical area. The sol-gel process provides a convenient way to produce many bioactive organic-inorganic hybrids. Among those, poly(e-caprolactone)/zirconia (PCL/ZrO₂) hybrids have proved to be bioactive with no toxic materials. The aim of this study was to investigate the effects of these materials on the cellular response as a function of the PCL content, in order to evaluate their potential use in the biomedical field. For this purpose, PCL/ZrO₂ hybrids containing 6, 12, 24, and 50 wt % of PCL were synthesized by the sol-gel method. The effects of their presence on the NIH-3T3 fibroblast cell line carrying out direct cell number counting, MTT, cell damage assays, flow cytometry-based analysis of cell-cycle progression, and immunoblotting experiments. The results confirm and extend the findings that PCL/ZrO₂ hybrids are free from toxicity. The hybrids containing 12 and 24 wt % PCL, (more than 6 and 50 wt % ones) enhance cell proliferation when compared to pure ZrO₂ by affecting cell cycle progression. The finding that the content of PCL in PCL/ZrO₂ hybrids differently supports cell proliferation suggests that PCL/ZrO₂ hybrids could be useful tools with different potential clinical applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5666992PMC
http://dx.doi.org/10.3390/ma10101186DOI Listing

Publication Analysis

Top Keywords

pcl/zro₂ hybrids
20
hybrid materials
8
synthesized sol-gel
8
hybrids pcl
8
cell proliferation
8
hybrids
7
pcl/zro₂
6
cell
6
influence polymer
4
polymer amount
4

Similar Publications

Integrin αvβ3, a primary cell-adhesion receptor, plays a crucial role in various biological processes, including angiogenesis, pathological neovascularization, and tumor metastasis. Its expression increases during tumor angiogenesis. The insulin-like growth factor 1 receptor (IGF1R) is a transmembrane protein that stimulates vital signaling pathways, promoting cancer cell growth, survival, and metabolism.

View Article and Find Full Text PDF

Synthetic vascular grafts are promising conduits for small caliber arteries. However, due to restenosis caused by intimal hyperplasia, they cannot keep long patency in vivo. In this work, through single cell RNA sequencing, we found that thrombospondin-1 (THBS1) was highly expressed in the regenerated smooth muscle cells (SMCs) in electrospun polycaprolactone (PCL) vascular grafts.

View Article and Find Full Text PDF

Glucose-Activated Janus Wound Dressing for Enhanced Management of Infected and Exudative Diabetic Wounds.

ACS Appl Mater Interfaces

December 2024

Key Laboratory of Textile Science & Technology, Ministry of Education, Donghua University, Shanghai 201620, China.

Article Synopsis
  • Diabetic wounds present complex challenges due to factors like high glucose levels and infections, leading to increased demand for innovative wound dressings in biomedical engineering.
  • A new Janus wound dressing has been developed, combining a hydrophobic antimicrobial layer with a hydrophilic sponge, which helps manage wound exudate and enhances healing.
  • In lab tests, this dressing improved healing rates by 54% within three days and effectively reduced methicillin-resistant (MRSA) infections, highlighting its potential for treating chronic diabetic wounds.
View Article and Find Full Text PDF

Application of subcutaneous extracellular matrix to prepare bilayer heparin-coated polycaprolactone/decellularized small-diameter vascular graft for tissue regeneration.

Int J Biol Macromol

December 2024

Department of Vascular Surgery, Xuan Wu Hospital and Institute of Vascular Surgery, Capital Medical University, Beijing 100053,China. Electronic address:

In clinical practice, the demand for functional small-diameter vascular grafts continues to increase. In this study, a decellularized aorta artery was inserted into a poly(caprolactone) (PCL) vascular scaffold for self-assembly in-vitro to create a hybrid scaffold. The hybrid scaffold was then implanted subcutaneously into the dorsal flanks and the subcutaneous extracellular matrix was applied for bilayer adhesion.

View Article and Find Full Text PDF

Nanofibers, with their high surface area-to-volume ratio, elasticity, and mechanical strength, significantly enhance scaffold structures for skin tissue engineering. The present study introduces a unique method of combining solution blow spinning (SBS) and freeze casting to fabricate biomimetic hybrid nanofibroporous scaffolds (BHNS) using polycaprolactone (PCL) and chitosan (CH). The developed scaffolds mimic the fibrous porous natural extracellular matrix (ECM) architecture, promoting cell adhesion, proliferation, and matrix deposition.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!