PMA-Induced THP-1 Macrophage Differentiation is Not Impaired by Citrate-Coated Platinum Nanoparticles.

Nanomaterials (Basel)

Nanobiointeractions & Nanodiagnostics, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy.

Published: October 2017

The innate immune system consists of several complex cellular and molecular mechanisms. During inflammatory responses, blood-circulating monocytes are driven to the sites of inflammation, where they differentiate into tissue macrophages. The research of novel nanomaterials applied to biomedical sciences is often limited by their toxicity or dangerous interactions with the immune cell functions. Platinum nanoparticles (PtNPs) have shown efficient antioxidant properties within several cells, but information on their potential harmful role in the monocyte-to-macrophage differentiation process is still unknown. Here, we studied the morphology and the release of cytokines in PMA-differentiated THP-1 pre-treated with 5 nm PtNPs. Although NP endocytosis was evident, we did not find differences in the cellular structure or in the release of inflammatory cytokines and chemokines compared to cells differentiated in PtNP-free medium. However, the administration of PtNPs to previously differentiated THP-1 induced massive phagocytosis of the PtNPs and a slight metabolism decrease at higher doses. Further investigation using undifferentiated and differentiated neutrophil-like HL60 confirmed the harmlessness of PtNPs with non-adherent innate immune cells. Our results demonstrate that citrate-coated PtNPs are not toxic with these immune cell lines, and do not affect the PMA-stimulated THP-1 macrophage differentiation process in vitro.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5666497PMC
http://dx.doi.org/10.3390/nano7100332DOI Listing

Publication Analysis

Top Keywords

thp-1 macrophage
8
macrophage differentiation
8
platinum nanoparticles
8
innate immune
8
immune cell
8
differentiation process
8
ptnps
6
pma-induced thp-1
4
differentiation impaired
4
impaired citrate-coated
4

Similar Publications

Background: is a differentially expressed gene (DEG) between M1 and M2 macrophages. This study explained why it causes opposite effects in different circumstances.

Methods: Gene expression profiles of various cell subsets were compared by mining a public database.

View Article and Find Full Text PDF

Semaphorin-4D signaling in recruiting dental stem cells for vascular stabilization.

Stem Cell Res Ther

January 2025

Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, Prince Philip Dental Hospital, The University of Hong Kong, 34 Hospital Road, Sai Ying Pun, Hong Kong, Hong Kong SAR.

Background: Achieving a stable vasculature is crucial for tissue regeneration. Endothelial cells initiate vascular morphogenesis, followed by mural cells that stabilize new vessels. This study investigated the in vivo effects of Sema4D-Plexin-B1 signaling on stem cells from human exfoliated deciduous teeth (SHED)-supported angiogenesis, focusing on its mechanism in PDGF-BB secretion.

View Article and Find Full Text PDF

Tumor-associated macrophages (TAMs) in the colorectal cancer (CRC) microenvironment promote tumor progression but can be reprogrammed into a pro-inflammatory state with anti-cancer properties. Activation of the G protein-coupled receptor 84 (GPR84) is associated with pro-inflammatory macrophage polarization, making it a potential target for CRC therapy. This study evaluates the effects of the GPR84 agonists 6-OAU and ZQ-16 on macrophage activation and anti-cancer efficacy.

View Article and Find Full Text PDF

Implants aim to restore skeletal dysfunction associated with ageing and trauma, yet infection and ineffective immune responses can lead to failure. This project characterized the microbiological and host cell responses to titanium alloy with or without electroplated metallic copper. Bacterial viability counting and scanning electron microscopy quantified and visualized the direct and indirect bactericidal effects of the Cu-electroplated titanium (Cu-Ep-Ti) against two different Staphylococcus aureus strains.

View Article and Find Full Text PDF

hemocyanin as a novel natural immunostimulant in mammals.

Front Immunol

January 2025

Instituto de Investigaciones Bioquímicas de La Plata "Prof. Dr. Rodolfo R. Brenner", (INIBIOLP), Universidad Nacional de La Plata (UNLP) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), La Plata, Argentina.

Introduction: Gastropod hemocyanins are potent immunostimulants in mammals, a trait associated with their large molecular size and unusual glycosylation patterns. While the hemocyanin from the marine snail keyhole limpet (KLH), has been widely studied and successfully employed as a carrier/adjuvant in several immunological applications, as well as a non-specific immunostimulant for bladder cancer treatment, few other gastropod hemocyanins have been biochemically and immunologically characterized. In this work, we investigated the immunogenic properties of the hemocyanin from (PcH), an invasive south American freshwater snail.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!