AI Article Synopsis

Article Abstract

Osteoarthritis (OA) is the most common disease of the joints, and is characterized by the breakdown of cartilage and degradation of the extracellular matrix. OA causes a high level of patient suffering and incurs large societal costs; however, the current strategies for treating OA are restricted due to limited understanding of the underlying molecular and cellular mechanisms. In the present study, the beneficial effects of isoimperatorin (Iso) were investigated using an experimental mouse model of OA, and its mechanism of action on primary chondrocytes was elucidated. Destabilization of the medial meniscus was performed on 8‑week‑old male mice to induce OA in the knees. Iso (500 mg/g/day) was intragastrically administered for 4 weeks. Degeneration of articular cartilage was assessed by histology using the Osteoarthritis Research Society International scoring system. The expression of matrix metalloproteinase (MMP)13, Runt‑related transcription factor (Runx)2, type X collagen (Col X) and vascular endothelial growth factor (VEGF) in the knee joints was examined by immunohistochemistry. In vitro, murine primary chondrocytes were treated with various concentrations of Iso, followed by 10 ng/ml interleukin‑1. The mRNA expression levels of MMP13, Runx2, Col X and VEGF were determined by reverse transcription‑quantitative polymerase chain reaction. The levels of autophagy and mammalian target of rapamycin (mTOR) signaling were determined by western blotting. Iso significantly ameliorated the severity of articular cartilage degradation in mice with experimental OA. The expression levels of MMP13, Runx2, Col X and VEGF were reduced in Iso‑treated mice. In murine primary chondrocytes, Iso also reduced MMP13, Runx2, Col X and VEGF expression, and activated autophagy by downregulating the mTOR complex 1 (mTORC1) signaling pathway. Therefore, the results of the present study demonstrated that Iso ameliorates OA‑induced pathological alterations by delaying chondrocyte deterioration, activating autophagy and inhibiting mTORC1, which suggests that Iso may have therapeutic potential for attenuating articular cartilage degradation and treating OA.

Download full-text PDF

Source
http://dx.doi.org/10.3892/mmr.2017.7777DOI Listing

Publication Analysis

Top Keywords

cartilage degradation
12
primary chondrocytes
12
articular cartilage
12
mmp13 runx2
12
runx2 col
12
col vegf
12
mammalian target
8
target rapamycin
8
signaling pathway
8
murine primary
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!