Fifty-Hertz Magnetic Field Affects the Epigenetic Modulation of the miR-34b/c in Neuronal Cells.

Mol Neurobiol

Division of Health Protection Technologies, ENEA-Italian National Agency for New Technologies, Energy and Sustainable Economic Development, ENEA-Casaccia, Via Anguillarese 301, 00123, Rome, Italy.

Published: July 2018

AI Article Synopsis

  • ELF-MFs have been linked to neurodegenerative diseases, and this study investigates how they affect the expression of specific miRNAs associated with neuronal response.
  • ELF-MFs reduce the levels of miR-34b and miR-34c in both human neuroblastoma cells and mouse neurons, which is related to methylation changes in their promoter region rather than p53 pathway involvement.
  • The findings indicate that ELF-MFs influence oxidative stress and gene expression, particularly increasing α-synuclein levels, suggesting a possible mechanism for neuron degeneration linked to ELF-MF exposure.

Article Abstract

The exposure to extremely low-frequency magnetic fields (ELF-MFs) has been associated to increased risk of neurodegenerative diseases, although the underlying molecular mechanisms are still undefined. Since epigenetic modulation has been recently encountered among the key events leading to neuronal degeneration, we here aimed at assessing if the control of gene expression mediated by miRNAs, namely miRs-34, has any roles in driving neuronal cell response to 50-Hz (1 mT) magnetic field in vitro. We demonstrate that ELF-MFs drive an early reduction of the expression level of miR-34b and miR-34c in SH-SY5Y human neuroblastoma cells, as well as in mouse primary cortical neurons, by affecting the transcription of the common pri-miR-34. This modulation is not p53 dependent, but attributable to the hyper-methylation of the CpG island mapping within the miR-34b/c promoter. Incubation with N-acetyl-l-cysteine or glutathione ethyl-ester fails to restore miR-34b/c expression, suggesting that miRs-34 are not responsive to ELF-MF-induced oxidative stress. By contrast, we show that miRs-34 control reactive oxygen species production and affect mitochondrial oxidative stress triggered by ELF-MFs, likely by modulating mitochondria-related miR-34 targets identified by in silico analysis. We finally demonstrate that ELF-MFs alter the expression of the α-synuclein, which is specifically stimulated upon ELF-MFs exposure via both direct miR-34 targeting and oxidative stress. Altogether, our data highlight the potential of the ELF-MFs to tune redox homeostasis and epigenetic control of gene expression in vitro and shed light on the possible mechanism(s) producing detrimental effects and predisposing neurons to degeneration.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12035-017-0791-0DOI Listing

Publication Analysis

Top Keywords

oxidative stress
12
magnetic field
8
epigenetic modulation
8
control gene
8
gene expression
8
demonstrate elf-mfs
8
elf-mfs
6
expression
5
fifty-hertz magnetic
4
field epigenetic
4

Similar Publications

Although considered an "eco-friendly" biodegradable plastic, polylactic acid (PLA) microplastic (PLA-MP) poses a growing concern for human health, yet its effects on male reproductive function remain underexplored. This study investigated the reproductive toxicity of PLA in male mice and its potential mechanisms. To this end, our in vivo and in vitro experiments demonstrated that after degradation in the digestive system, a significant number of PLA-MP-derived nanoparticles could penetrate the blood-testis barrier (BTB) and localize within the spermatogenic microenvironment.

View Article and Find Full Text PDF

Despite growing awareness of their importance in soil ecology, the genetic and physiological traits of bacterial predators are still relatively poorly understood. In the course of a predator evolution experiment, we identified a class of genotypes leading to enhanced predation against diverse species. RNA-seq analysis demonstrated that this phenotype is linked to the constitutive activation of a predation-specific program.

View Article and Find Full Text PDF

Rational Design of Nanozymes for Engineered Cascade Catalytic Cancer Therapy.

Chem Rev

January 2025

Center for Theoretical Interdisciplinary Sciences Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, P. R. China.

Nanozymes have shown significant potential in cancer catalytic therapy by strategically catalyzing tumor-associated substances and metabolites into toxic reactive oxygen species (ROS) , thereby inducing oxidative stress and promoting cancer cell death. However, within the complex tumor microenvironment (TME), the rational design of nanozymes and factors like activity, reaction substrates, and the TME itself significantly influence the efficiency of ROS generation. To address these limitations, recent research has focused on exploring the factors that affect activity and developing nanozyme-based cascade catalytic systems, which can trigger two or more cascade catalytic processes within tumors, thereby producing more therapeutic substances and achieving efficient and stable cancer therapy with minimal side effects.

View Article and Find Full Text PDF

Protozoa-enhanced conjugation frequency alters the dissemination of soil antibiotic resistance.

ISME J

January 2025

State Key Laboratory for Ecological Security of Regions and Cities, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China.

Protozoa, as primary predators of soil bacteria, represent an overlooked natural driver in the dissemination of antibiotic resistance genes. However, the effects of protozoan predation on antibiotic resistance genes dissemination at the community level, along with the underlying mechanisms, remain unclear. Here we used fluorescence-activated cell sorting, qPCR, combined with metagenomics and reverse transcription quantitative PCR, to unveil how protozoa (Colpoda steinii and Acanthamoeba castellanii) influence the plasmid-mediated transfer of antibiotic resistance genes to soil microbial communities.

View Article and Find Full Text PDF

Metabolomic and proteomic changes in leaves of rubber seedlings infected by Phytophthora palmivora.

Tree Physiol

January 2025

Special Research Incubator Unit of Fermentomics, Department of Biotechnology, Faculty of Agro-Industry, Kasetsart University, Bangkok 10900, Thailand.

Phytophthora palmivora, an oomycete pathogen, induces leaf fall disease in rubber trees (Hevea brasiliensis), causing significant economic losses. Effective disease management requires an understanding metabolic dynamics during infection. This study employed untargeted metabolomic and proteomic analyses to investigate the response of rubber seedling leaves to P.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!