Ruthenium-catalysed σ-activation for remote meta-selective C-H functionalisation.

Chem Soc Rev

Department of Chemistry, University of Bath, Claverton Down, Somerset, BA2 7AY, UK.

Published: December 2017

The search for selective C-H functionalisation has enabled some of the most elegant techniques in modern catalysis. Herein, we review the rapidly expanding field of ruthenium catalysed σ-activation as a tool in the selective meta-C-H functionalisation of arenes.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c7cs00496fDOI Listing

Publication Analysis

Top Keywords

c-h functionalisation
8
ruthenium-catalysed σ-activation
4
σ-activation remote
4
remote meta-selective
4
meta-selective c-h
4
functionalisation search
4
search selective
4
selective c-h
4
functionalisation enabled
4
enabled elegant
4

Similar Publications

The direct discharge of cationic surfactants into environmental matrices has exponentially increased due to their wide application in many products. These compounds and their degraded products disrupt microbial dynamics, hinder plant survival, and affect human health. Therefore, there is an urgent need to develop electroanalytical assessment techniques for their identification, determination, and monitoring.

View Article and Find Full Text PDF

C-H bond functionalisation has developed into a powerful synthetic methodology that is applicable to a wide array of substrates, including organometallic compounds. In this study, racemic, planar-chiral 1,2-dihydroferroceno[]isoquinoline and analogous helical compounds with one or two additional -fused benzene rings were synthesised by palladium-catalysed C-H bond activation/cyclisation of -[(bromoaryl)methyl]--(methylsulfonyl)aminoferrocenes. These starting materials are readily accessible from FcNHSOMe (Fc = ferrocenyl) and appropriate vicinal bromo-(bromomethyl)arenes.

View Article and Find Full Text PDF

Methods to study prFMN-UbiD mediated (de)carboxylation.

Methods Enzymol

November 2024

Manchester Institute of Biotechnology, University of Manchester, Manchester, United Kingdom. Electronic address:

The microbial UbiX-UbiD system facilitates the reversible (de)carboxylation of alpha, beta-unsaturated carboxylic acids, including aromatic compounds. The direct C-H carboxylation presents an attractive method for functionalisation and carbon capture but is difficult to achieve under mild conditions. Hence, UbiD-mediated Csp2-H activation can serve as a versatile tool for developing new biocatalytic routes to transform aryl or alkene compounds and carbon dioxide into valuable commodity chemicals.

View Article and Find Full Text PDF

Direct C-H functionalisation of azoles Minisci reactions.

Org Biomol Chem

December 2024

Institute of Chemical Sciences, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, UK.

Azoles have widespread applications in medicinal chemistry; for example, thiazoles, imidazoles, benzimidazoles, isoxazoles, tetrazoles and triazoles appear in the top 25 most frequently used N-heterocycles in FDA-approved drugs. Efficient routes for the late-stage C-H functionalisation of azole cores would therefore be highly desirable. The Minisci reaction, a nucleophilic radical addition reaction onto N-heterocyclic bases, is a direct C-H functionalisation reaction that has the potential to be a powerful method for C-H functionalisations of azole scaffolds.

View Article and Find Full Text PDF

Selective functionalisation of hydrocarbons using transition metal complexes has evoked significant research interest in industrial chemistry. However, selective oxidation of unactivated aliphatic C-H bonds is challenging because of the high bond dissociation energies. Herein, we report the synthesis, characterisation and catalytic activity of nickel(ii) complexes ([Ni(L1-L3)(OH)](ClO) (1-3)) of monoamidate tetradentate ligands [L1: 2-(bis(pyridin-2-ylmethyl)amino)--phenylacetamide, L2: 2-(bis(2-pyridin-2-ylmethyl)amino)--(naphthalen-1-yl)acetamide, L3: -benzyl-2-(bis(pyridin-2-ylmethyl)amino)acetamide] in selective oxidation of cycloalkanes using -CPBA as the oxidant.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!