In oxygenic photosynthesis the initial photochemical processes are carried out by photosystem I (PSI) and II (PSII). Although subunit composition varies between cyanobacterial and plastid photosystems, the core structures of PSI and PSII are conserved throughout photosynthetic eukaryotes. So far, the photosynthetic complexes have been characterised in only a small number of organisms. We performed in silico and biochemical studies to explore the organization and evolution of the photosynthetic apparatus in the chromerids Chromera velia and Vitrella brassicaformis, autotrophic relatives of apicomplexans. We catalogued the presence and location of genes coding for conserved subunits of the photosystems as well as cytochrome bf and ATP synthase in chromerids and other phototrophs and performed a phylogenetic analysis. We then characterised the photosynthetic complexes of Chromera and Vitrella using 2D gels combined with mass-spectrometry and further analysed the purified Chromera PSI. Our data suggest that the photosynthetic apparatus of chromerids underwent unique structural changes. Both photosystems (as well as cytochrome bf and ATP synthase) lost several canonical subunits, while PSI gained one superoxide dismutase (Vitrella) or two superoxide dismutases and several unknown proteins (Chromera) as new regular subunits. We discuss these results in light of the extraordinarily efficient photosynthetic processes described in Chromera.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5643376PMC
http://dx.doi.org/10.1038/s41598-017-13575-xDOI Listing

Publication Analysis

Top Keywords

relatives apicomplexans
8
psi psii
8
photosynthetic complexes
8
photosynthetic apparatus
8
apparatus chromerids
8
photosystems well
8
well cytochrome
8
cytochrome atp
8
atp synthase
8
photosynthetic
7

Similar Publications

Coproantigen detection and molecular identification of Cryptosporidium species among newborn and adult farm animals.

AMB Express

January 2025

Parasitology and Animal Diseases Department, Veterinary Research Institute, National Research Centre, El Buhouth St., Dokki, Giza, Egypt.

Cryptosporidium sp. is an obligatory intracellular apicomplexan protozoan parasite that causes a disease called cryptosporidiosis with substantial veterinary and medical importance. Therefore, this study aimed to evaluate an early diagnosis of cryptosporidiosis using the anti-Cryptosporidium parvum oocyst immunoglobulin IgG polyclonal antibodies (anti-C.

View Article and Find Full Text PDF

is an obligate human parasite of the phylum Apicomplexa and is the causative agent of the most lethal form of human malaria. Although N6-methyladenosine modification is thought to be one of the major post-transcriptional regulatory mechanisms for stage-specific gene expression in apicomplexan parasites, the precise base position of m6A in mRNAs or noncoding RNAs in these parasites remains unknown. Here, we report global nucleotide-resolution mapping of m6A residues in using DART-seq technology, which quantitatively displayed a stage-specific, dynamic distribution pattern with enrichment near mRNA 3' ends.

View Article and Find Full Text PDF

Mitochondrial ribosomes (mitoribosomes) are essential, and their function of synthesising mitochondrial proteins is universal. The core of almost all mitoribosomes is formed from a small number of long and self-folding rRNA molecules. In contrast, the mitoribosome of the apicomplexan parasite Toxoplasma gondii assembles from over 50 extremely short rRNA molecules.

View Article and Find Full Text PDF

The apicomplexan AP2 (ApiAP2) proteins are the best characterized family of DNA-binding proteins in Plasmodium spp. malaria parasites. Apart from the AP2 DNA-binding domain, there is little sequence similarity between ApiAP2 proteins.

View Article and Find Full Text PDF

The FIKK protein family, encompassing 21 serine-threonine protein kinases, is a distinctive cluster exclusive to the Apicomplexa phylum. Predominantly located in which is a malarial parasite, with a solitary gene identified in a distinct apicomplexan species, this family derives its nomenclature from - phenylalanine, isoleucine, lysine, lysine (FIKK), a conserved amino acid motif. Integral to the parasite's life cycle and consequential to malaria pathogenesis, the absence of orthologous proteins in eukaryotic organisms designates it as a promising antimalarial drug target.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!