The Gram-negative bacterial outer membrane (OM) is a unique bilayer that forms an efficient permeation barrier to protect the cell from noxious compounds . The defining characteristic of the OM is lipid asymmetry, with phospholipids comprising the inner leaflet and lipopolysaccharides comprising the outer leaflet . This asymmetry is maintained by the Mla pathway, a six-component system that is widespread in Gram-negative bacteria and is thought to mediate retrograde transport of misplaced phospholipids from the outer leaflet of the OM to the cytoplasmic membrane . The OM lipoprotein MlaA performs the first step in this process via an unknown mechanism that does not require external energy input. Here we show, using X-ray crystallography, molecular dynamics simulations and in vitro and in vivo functional assays, that MlaA is a monomeric α-helical OM protein that functions as a phospholipid translocation channel, forming a ~20-Å-thick doughnut embedded in the inner leaflet of the OM with a central, amphipathic pore. This architecture prevents access of inner leaflet phospholipids to the pore, but allows outer leaflet phospholipids to bind to a pronounced ridge surrounding the channel, followed by diffusion towards the periplasmic space. Enterobacterial MlaA proteins form stable complexes with OmpF/C , but the porins do not appear to play an active role in phospholipid transport. MlaA represents a lipid transport protein that selectively removes outer leaflet phospholipids to help maintain the essential barrier function of the bacterial OM.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/s41564-017-0046-x | DOI Listing |
Methods Mol Biol
January 2025
Department of Immunobiology, University of Lausanne, Epalinges, Switzerland.
Fluorescence recovery after photobleaching (FRAP) can be employed to investigate membrane lipid mixing of vacuoles in live budding yeast cells and distinguish the fused, hemi-fused or non-fused states of these organelles under physiological conditions. Here, we describe a protocol for labeling the outer and inner leaflets of vacuoles in live cells that allow to detect hemifusion intermediates and, thus, identify components necessary for fusion pore opening.
View Article and Find Full Text PDFBiophys Chem
January 2025
La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Australia. Electronic address:
The rapid spread of antibiotic-resistant strains of bacteria has created an urgent need for new alternative antibiotic agents. Membrane disrupting antimicrobial peptides (AMPs): short amino acid sequences with bactericidal and fungicidal activity that kill pathogens by permeabilizing their plasma membrane may offer a solution for this global health crisis. Magainin 2 is an AMP secreted by the African clawed frog (Xenopus laevis) that is described as a toroidal pore former membrane disrupting AMP.
View Article and Find Full Text PDFPathogens
November 2024
Guangzhou CnFerment Biotechnology Co., Ltd., Guangzhou 510440, China.
Gram-negative bacteria possess an asymmetric outer membrane, where the outer leaflet consists of LPSs and the inner leaflet comprises phospholipids. , an opportunistic milk-borne pathogen that causes severe neonatal meningitis and bacteremia, displays diverse lipopolysaccharide (LPS) structures. As a barrier of the bacterial cell, LPSs likely influenced resistance to environment stresses; however, there are no research reports on this aspect, hindering the development of novel bactericidal strategies overcoming the pathogen's resilience.
View Article and Find Full Text PDFMolecules
December 2024
Coimbra Chemistry Center, Institute of Molecular Sciences (CQC-IMS), University of Coimbra, 3004-535 Coimbra, Portugal.
The membrane dipole potential that arises from the interfacial water and constitutive dipolar groups of lipid molecules modulates the interaction of amphiphiles and proteins with membranes. Consequently, its determination for lipid mixtures resembling the existing diversity in biological membranes is very relevant. In this work, the dipole potentials of monolayers, formed at the air-water interface, from pure or mixed lipids (1-palmitoyl-2-oleoyl--glycero-3-phosphocholine (POPC), 1-palmitoyl-2-oleoyl--glycero-3-phosphoethanolamine (POPE), 1-palmitoyl-2-oleoyl--glycero-3-phosphatidyserine (POPS), sphingomyelin (SpM) and cholesterol) were measured and correlated with the mean area per lipid.
View Article and Find Full Text PDFInt J Pharm
December 2024
Department of Medical BioSciences, Radboud University Medical Center, The Netherlands; Department of Medical Biochemistry, College of Medicine and Medical Sciences, Arabian Gulf University, Manama 329, Bahrain. Electronic address:
Messenger RNA is a highly promising biotherapeutic modality with great potential in preventive and therapeutic vaccination, and in the modulation of cellular function through transient expression of therapeutic proteins. However, for cellular delivery, mRNA requires packaging into delivery vehicles that mediate uptake and also shield the mRNA against degradation. Lipid-coated calcium phosphate (LCP) nanoparticles encapsulate the mRNA in a calcium phosphate core, which is coated by a bilayer of structural lipids, positively charged lipids and pegylated lipid to mediate cellular uptake and achieve colloidal stabilization.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!