AI Article Synopsis

  • Current RA treatments can lead to significant side effects and do not fully address synovial inflammation, prompting the exploration of integrin α9 and its ligand tenascin-C in RA-FLSs.
  • In a 3D culture setting, RA-FLSs exhibited abnormal growth patterns and produced proinflammatory mediators, unlike FLSs from osteoarthritis, highlighting the unique pathogenic features of RA.
  • The study suggests that blocking α9 could inhibit the hyperactive behaviors of RA-FLSs and offers a potential nonimmunosuppressive treatment strategy for RA-related inflammation.

Article Abstract

Despite advances in the treatment of rheumatoid arthritis (RA), currently approved medications can have significant side effects due to their direct immunosuppressive activities. Additionally, current therapies do not address residual synovial inflammation. In this study, we evaluated the role of integrin α9 and its ligand, tenascin-C (Tn-C), on the proliferative and inflammatory response of fibroblast-like synoviocytes (FLSs) from RA patients grown in three-dimensional (3D)-micromass culture. FLSs from osteoarthritis patients, when grown in the 3D-culture system, formed self-directed lining-like structures, whereas FLSs from RA tissues (RA-FLSs) developed an abnormal structure of condensed cellular accumulation reflective of the pathogenic features of RA synovial tissues. Additionally, RA-FLSs grown in 3D culture showed autonomous production of proinflammatory mediators. Predominant expression of α9 and Tn-C was observed in the condensed lining, and knockdown of these molecules abrogated the abnormal lining-like structure formation and suppressed the spontaneous expression of matrix metalloproteinases, IL-6, TNFSF11/RANKL, and cadherin-11. Disruption of α9 also inhibited expression of Tn-C, suggesting existence of a positive feedback loop in which the engagement of α9 with Tn-C self-amplifies its own signaling and promotes progression of synovial hyperplasia. Depletion of α9 also suppressed the platelet-derived growth factor-induced hyperplastic response of RA-FLSs and blunted the TNF-α-induced expression of matrix metalloproteinases and IL-6. Finally, α9-blocking Ab also suppressed the formation of the condensed cellular lining by RA-FLSs in 3D cultures in a concentration-related manner. This study demonstrates the central role of α9 in pathogenic behaviors of RA-FLSs and highlights the potential of α9-blocking agents as a nonimmunosuppressive treatment for RA-associated synovitis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5672818PMC
http://dx.doi.org/10.4049/jimmunol.1700941DOI Listing

Publication Analysis

Top Keywords

integrin α9
8
fibroblast-like synoviocytes
8
rheumatoid arthritis
8
patients grown
8
condensed cellular
8
α9 tn-c
8
expression matrix
8
matrix metalloproteinases
8
metalloproteinases il-6
8
α9
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!