Background: Antimicrobial photodynamic therapy (APDT) has been broadly investigated as an alternative to treat localized infections, without leading to the selection of resistant microorganisms. Infectious stomatitis is a multifactorial disease frequently reported in captive snakes characterized by infection of the oral mucosa and surrounding tissues. In this study, we investigated methylene blue (MB)-mediated APDT to treat infectious stomatitis in snakes and verified the resistance phenotype and genotype before and after APDT.

Methods: Three Boid snakes presented petechiae, edema and caseous material in their oral cavities. MB (0.01%) was applied on the lesions and after 5min they were irradiated using a red laser (λ=660nm), fluence of 280J/cm, 8J and 80s per point, 100mW, spot size 0.028cm and fluence rate of 3.5W/cm. APDT was repeated once a week during 3 months. Samples of the lesions were collected to identify bacteria and antibiotic resistance profiles. To analyze the clonality of bacterial isolates before and after APDT, isolates were subjected to ERIC PCR analysis.

Results: Snakes presented clinical improvement such as reduction of inflammatory signs and caseous material. Pseudomonas aeruginosa and Escherichia coli were present in all snakes; Klebsiella pneumoniae and Morganella morganii were also identified in some animals. We also observed that the oral microbiota was completely replaced following APDT. However, K. pneumoniae isolates before and after APDT were a single clone with 100% of genetic similarity that lost resistance phenotype for seven antibiotics of four classes.

Conclusions: These results show that APDT can be used to treat infectious stomatitis in snakes.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.pdpdt.2017.10.004DOI Listing

Publication Analysis

Top Keywords

infectious stomatitis
16
stomatitis snakes
12
antimicrobial photodynamic
8
photodynamic therapy
8
apdt treat
8
treat infectious
8
resistance phenotype
8
snakes presented
8
caseous material
8
isolates apdt
8

Similar Publications

U-73122, a phospholipase C inhibitor, impairs lymphocytic choriomeningitis virus virion infectivity.

J Gen Virol

December 2024

Laboratory of Emerging Viral Diseases, International Research Center for Infectious Diseases, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan.

Lassa virus (LASV) is an Old World (OW) mammarenavirus that causes Lassa fever, a life-threatening acute febrile disease endemic in West Africa. Lymphocytic choriomeningitis virus (LCMV) is a worldwide-distributed, prototypic OW mammarenavirus of clinical significance that has been largely neglected as a human pathogen. No licensed OW mammarenavirus vaccines are available, and the current therapeutic option is limited to the off-label use of ribavirin, which offers only partial efficacy.

View Article and Find Full Text PDF

Engineered packaging cell line for the enhanced production of baboon-enveloped retroviral vectors.

Mol Ther Nucleic Acids

December 2024

Gene Therapy Program, Dana Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School, Boston, MA 02115, USA.

The baboon endogenous retrovirus (BaEV) glycoprotein is superior to the commonly used vesicular stomatitis virus glycoprotein (VSVg) for retroviral gene transfer into resting hematopoietic stem cells and lymphocyte populations. The derivative BaEVRLess (lacking the R domain) produces higher viral titers compared with wild-type BaEV, but vector production is impaired by syncytia formation and cell death of the HEK293T cells due to the high fusogenic activity of the glycoprotein. This lowers viral titers, leads to increased batch-to-batch variability, and impedes the establishment of stable packaging cell lines essential for the economical production of viral supernatants.

View Article and Find Full Text PDF

Quantification of Neutralizing Antibodies in Serum Using VSV-MARV-GFP.

Methods Mol Biol

November 2024

Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA.

Article Synopsis
  • Neutralizing antibodies are crucial for defending against filoviruses like the Marburg virus (MARV).
  • The chapter outlines a method to measure neutralization titers in serum samples using a safer, replicating virus model.
  • This method employs a recombinant vesicular stomatitis virus that expresses MARV glycoprotein and a green fluorescent protein, allowing for easier assessment.
View Article and Find Full Text PDF

Generation, Recovery, and Propagation of a Recombinant Vesicular Stomatitis Virus Expressing the Marburg Virus Glycoprotein.

Methods Mol Biol

November 2024

Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA.

Article Synopsis
View Article and Find Full Text PDF

Comprehensive transcriptomic analysis identifies cholesterol transport pathway as a therapeutic target of porcine epidemic diarrhea coronavirus.

Virus Res

December 2024

Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, Yangzhou 225009, PR China. Electronic address:

Porcine epidemic diarrhea virus (PEDV) is a highly contagious virus that poses a serious threat to the global pig industry. Despite extensive efforts, the mechanism underlying virus entry for PEDV remains elusive. In this study, we first identified PEDV-susceptible and non-susceptible cell lines by using PEDV spike pseudotyped vesicular stomatitis virus.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!