(+)-trans-3,4,4A,5,6,10B-Hexahydro-4-propyl-2H-naphth(1,2-B)(1,4) oxazine-9-ol is a novel potent dopamine agonist. A sensitive and specific gas chromatographic/mass spectrometric assay procedure has been developed for the determination of the dopamine agonist at low picogram per millilitre levels in human plasma. The method comprises an extraction of the agonist from human plasma and subsequent derivatization of the phenolic functionality with pentafluoropropionic anhydride. The derivative is quantified by gas chromatographic and mass spectrometric detection using selected ion monitoring. The assay is linear over the concentration range 10-1000 pg ml-1.

Download full-text PDF

Source
http://dx.doi.org/10.1002/bms.1200170411DOI Listing

Publication Analysis

Top Keywords

dopamine agonist
12
human plasma
12
gas chromatographic
8
chromatographic mass
8
mass spectrometric
8
spectrometric assay
8
sensitive gas
4
assay novel
4
novel dopamine
4
agonist
4

Similar Publications

Purpose: A recent update of consensus guidelines for the management of Cushing's disease (CD) included indications for medical therapy. However, there is limited evidence regarding their implementation in clinical practice. This study aimed to evaluate current medical therapy approaches by expert pituitary centers through an audit conducted to validate the criteria of Pituitary Tumors Centers of Excellence (PTCOEs) and provide an initial standard of medical care for CD.

View Article and Find Full Text PDF

Pharmacotherapy for Tourette Syndrome.

Psychiatr Clin North Am

March 2025

Pediatric Psychiatry OCD and Tic Disorders Program, Department of Psychiatry, Massachusetts General Hospital, 185 Cambridge Street, Suite 2000, Boston, MA 02114, USA. Electronic address:

Tourette syndrome (TS) is associated with dysregulated cortico-striatal-thalamo-cortical neural circuitry, of which the primary implicated neurotransmitters include dopamine, glutamate, and gamma-aminobutyric acid. Pharmacologic intervention for tics should be considered when tics are causing psychological, functional, or physical impairment, and behavioral treatment is either inaccessible or ineffective. Only 3 medications have Food and Drug Administration approval for TS, including 2 typical antipsychotics (pimozide and haloperidol) and 1 atypical antipsychotic (aripiprazole).

View Article and Find Full Text PDF

The role of rodent behavioral models of schizophrenia in the ongoing search for novel antipsychotics.

Expert Opin Drug Discov

January 2025

Centro de Investigación en Reproducción Animal, Universidad Autónoma de Tlaxcala - CINVESTAV Tlaxcala, Tlaxcala, México.

Introduction: Existing pharmacotherapies for schizophrenia have not progressed beyond targeting dopamine and serotonin neurotransmission. Rodent models of schizophrenia are a necessary tool for elucidating neuropathological processes and testing potential pharmacotherapies, but positive preclinical results in rodent models often do not translate to positive results in the clinic.

Areas Covered: The authors reviewed PubMed for studies that applied rodent behavioral models of schizophrenia to assess the antipsychotic potential of several novel pharmacotherapies currently under investigation.

View Article and Find Full Text PDF

Background: Recent studies suggest that the anterior limb of the internal capsule may be an area of convergence for multiple compulsion loops. In this study, the role of different dopaminergic compulsion loops in the mechanism of obsessive-compulsive disorder (OCD) was investigated by selectively damaging dopaminergic neurons or fibers in the corresponding targets with 6-hydroxydopamine (6-OHDA) and depicting the anatomical map of various compulsion loops located in the anterior limb of the internal capsule.

Methods: A total of 52 male Sprague Dawley (SD) rats were exposed to either saline (1 mL/kg, NS group, n = 6) or quinpirole (QNP, dopamine D2-agonist, 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!