A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Insights into the characteristics and sources of primary and secondary organic carbon: High time resolution observation in urban Shanghai. | LitMetric

Insights into the characteristics and sources of primary and secondary organic carbon: High time resolution observation in urban Shanghai.

Environ Pollut

Center for Atmospheric Chemistry Study, Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China. Electronic address:

Published: February 2018

There is growing evidence suggesting that organic aerosols play an important role in the evolution of severe haze episodes. However, long-term investigations of the different characteristics of carbonaceous aerosols during haze and non-haze days are insufficient. In this work, hourly measurements of organic carbon (OC) and elemental carbon (EC) in PM were conducted in Shanghai, a megacity in Eastern China, over the course of a year from July 2013 to June 2014. Both OC and EC exhibited a bimodal diel pattern and were highly dependent on the wind speed and direction. The concentration-weighted trajectory (CWT) analysis illustrated that primary OC (POC) and EC were largely associated with regional and long-range transport. Secondary OC (SOC) formation was the strongest during the harvest season owing to significant biomass burning emissions from the adjacent Yangtze River Delta and farther agricultural regions. Compared to OC (6.7 μg m) and EC (2.0 μg m) in the non-haze days, higher levels of both OC (15.6 μg m) and EC (7.7 μg m) were observed in the haze days as expected, but with lower OC/EC ratios in the haze days (2.4) than in non-haze days (4.6). The proportion of POC and EC in PM remained relatively constant as a function of PM mass loadings, while that of SOC significantly decreased on the highly polluted days. It is concluded that the haze pollution in urban Shanghai was influenced more by the primary emissions (POC and EC), while the role of SOC in triggering haze was limited.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envpol.2017.10.003DOI Listing

Publication Analysis

Top Keywords

non-haze days
12
organic carbon
8
urban shanghai
8
haze days
8
haze
6
days
6
insights characteristics
4
characteristics sources
4
sources primary
4
primary secondary
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!