Background: Local aortic pulse wave velocity (PWV) is a measure for vascular stiffness and has a predictive value for cardiovascular events. Ultra high field CMR scanners allow the quantification of local PWV in mice, however these systems are yet unable to monitor the distribution of local elasticities.
Methods: In the present study we provide a new accelerated method to quantify local aortic PWV in mice with phase-contrast cardiovascular magnetic resonance imaging (PC-CMR) at 17.6 T. Based on a k-t BLAST (Broad-use Linear Acquisition Speed-up Technique) undersampling scheme, total measurement time could be reduced by a factor of 6. The fast data acquisition enables to quantify the local PWV at several locations along the aortic blood vessel based on the evaluation of local temporal changes in blood flow and vessel cross sectional area. To speed up post processing and to eliminate operator bias, we introduce a new semi-automatic segmentation algorithm to quantify cross-sectional areas of the aortic vessel. The new methods were applied in 10 eight-month-old mice (4 C57BL/6J-mice and 6 ApoE -mice) at 12 adjacent locations along the abdominal aorta.
Results: Accelerated data acquisition and semi-automatic post-processing delivered reliable measures for the local PWV, similiar to those obtained with full data sampling and manual segmentation. No statistically significant differences of the mean values could be detected for the different measurement approaches. Mean PWV values were elevated for the ApoE -group compared to the C57BL/6J-group (3.5 ± 0.7 m/s vs. 2.2 ± 0.4 m/s, p < 0.01). A more heterogeneous PWV-distribution in the ApoE -animals could be observed compared to the C57BL/6J-mice, representing the local character of lesion development in atherosclerosis.
Conclusion: In the present work, we showed that k-t BLAST PC-MRI enables the measurement of the local PWV distribution in the mouse aorta. The semi-automatic segmentation method based on PC-CMR data allowed rapid determination of local PWV. The findings of this study demonstrate the ability of the proposed methods to non-invasively quantify the spatial variations in local PWV along the aorta of ApoE -mice as a relevant model of atherosclerosis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5641989 | PMC |
http://dx.doi.org/10.1186/s12968-017-0382-2 | DOI Listing |
Nutrients
December 2024
Research Network on Chronicity, Primary Care and Health Promotion (RICAPPS), 37005 Salamanca, Spain.
Background: Recent research highlights the potential role of sex-specific variations in cardiovascular disease. The gut microbiome has been shown to differ between the sexes in patients with cardiovascular risk factors.
Objectives: The main objective of this study is to analyze the differences between women and men in the relationship between gut microbiota and measures of arterial stiffness.
Am J Physiol Cell Physiol
January 2025
Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China.
Arterial stiffening is a hallmark of chronic kidney disease (CKD) related cardiovascular events and is primarily attributed to the elevated matrix stiffness. Stiffened arteries are accompanied by low-grade inflammation, but the causal effects of matrix stiffness on inflammation remain unknown. For analysis of the relationship between arterial stiffness and vascular inflammation, pulse wave velocity (PWV) and aortic inflammatory markers were analyzed in an adenine-induced mouse model of CKD in chronological order.
View Article and Find Full Text PDFFront Med (Lausanne)
December 2024
Metabolismo Óseo, Vascular y Enfermedades Inflamatorias Crónicas, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain.
Introduction: Cardiovascular disease is the major cause of premature death in chronic kidney disease (CKD) and vascular damage is often detected belatedly, usually evaluated by expensive and invasive techniques. CKD involves specific risk factors that lead to vascular calcification and atherosclerosis, where inflammation plays a critical role. However, there are few inflammation-related markers to predict vascular damage in CKD.
View Article and Find Full Text PDFSci Rep
November 2024
Lions Eye Institute, Centre for Ophthalmology and Visual Science, University of Western Australia, Crawley, Australia.
The carotid-femoral pulse wave velocity (PWV) method is used clinically to determine degrees of stiffness and other indices of disease. It is believed PWV measurement in retinal vessels may allow early detection of diseases. In this paper we present a new non-invasive method for estimating PWVs in retinal vein segments close to the optic disc centre, based on the measurement of blood column pulsation in retinal veins (reflective of vessel wall pulsation), using modified photoplethysmography (PPG).
View Article and Find Full Text PDFJ Clin Med
September 2024
School of Medicine, Department of Surgical, Medical, Molecular Pathology and Critical Care Medicine, University of Pisa, 56126 Pisa, Italy.
This study compares the power of the radiofrequency (RF) signal reflected from the media layer (media power) of the common carotid artery (CCA) and the CCA stiffness between individuals with and without type 2 diabetes mellitus (T2DM). It also evaluates the associations of CCA media power with plasma glucose and lipid levels, as well as carotid stiffness. A total of 540 individuals, 115 with and 425 without T2DM (273 males, mean age = 64 ± 8 years) were studied using RF-based tracking of the right CCA.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!