In this review, recent data are presented on molecular and cellular mechanisms of pathogenesis of the most widespread (about 95%) sporadic forms of Alzheimer's disease obtained on in vivo rodent models. Although none of the available models can fully reproduce the human disease, several key molecular mechanisms (such as dysfunction of neurotransmitter systems, especially of the acetylcholinergic system, β-amyloid toxicity, oxidative stress, neuroinflammation, mitochondrial dysfunction, disturbances in neurotrophic systems) are confirmed with different models. Injection models, olfactory bulbectomy, and senescence accelerated OXYS rats are reviewed in detail. These three approaches to in vivo modeling of sporadic Alzheimer's disease have demonstrated a considerable similarity in molecular and cellular mechanisms of pathology development. Studies on these models provide complementary data, and each model possesses its specific advantages. A general analysis of the data reported for the three models provides a multifaceted and the currently most complete molecular picture of sporadic Alzheimer's disease. This is highly relevant also from the practical viewpoint because it creates a basis for elaboration and preclinical studies of means for treatment of this disease.

Download full-text PDF

Source
http://dx.doi.org/10.1134/S0006297917100029DOI Listing

Publication Analysis

Top Keywords

alzheimer's disease
16
molecular cellular
12
cellular mechanisms
12
sporadic alzheimer's
12
rodent models
8
models
7
disease
6
molecular
5
mechanisms
4
sporadic
4

Similar Publications

Background: Research has shown that engaging in a range of healthy lifestyles or behavioral factors can help reduce the risk of developing dementia. Improved knowledge of modifiable risk factors for dementia may help engage people to reduce their risk, with beneficial impacts on individual and public health. Moreover, many guidelines emphasize the importance of providing education and web-based resources for dementia prevention.

View Article and Find Full Text PDF

With the increasing number of patients with Alzheimer's Disease (AD), the demand for early diagnosis and intervention is becoming increasingly urgent. The traditional detection methods for Alzheimer's disease mainly rely on clinical symptoms, biomarkers, and imaging examinations. However, these methods have limitations in the early detection of Alzheimer's disease, such as strong subjectivity in diagnostic criteria, high detection costs, and high misdiagnosis rates.

View Article and Find Full Text PDF

Influence of lung function on macro- and micro-structural brain changes in mid- and late-life.

Int J Surg

January 2025

Aging Research Center, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden.

Introduction: Lung function has been associated with cognitive decline and dementia, but the extent to which lung function impacts brain structural changes remains unclear. We aimed to investigate the association of lung function with structural macro- and micro-brain changes across mid- and late-life.

Methods: The study included a total of 37 164 neurologic disorder-free participants aged 40-70 years from the UK Biobank, who underwent brain MRI scans 9 years after baseline.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is the most prevalent neurodegenerative disorder characterized by cognitive decline. Despite extensive research, therapeutic options remain limited. Varenicline, an αβ nicotinic acetylcholine receptor agonist, shows promise in enhancing cognitive function.

View Article and Find Full Text PDF

Neurodegeneration is presumed to be the pathological process measure most proximal to clinical symptom onset in Alzheimer Disease (AD). Structural MRI is routinely collected in research and clinical trial settings. Several quantitative MRI-based measures of atrophy have been proposed, but their low correspondence with each other has been previously documented.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!