Background: Identifying older adults at risk of cognitive decline represents a challenge as Alzheimer's disease (AD) modifying therapies move toward preclinical stages.

Objective: To investigate the relationship between AD biomarkers and subsequent change in cognition in a cohort of cognitively intact older adults.

Methods: 84 cognitively normal subjects (mean age 72.0 years, 59% women) were recruited through the Massachusetts Alzheimer's Disease Research Center and the Harvard Aging Brain Study and followed over 3 years. Measurements of amyloid-β 1-42 (Aβ42), total Tau (t-Tau), and Tau phosphorylated at threonine 181 (p-Tau181) in the cerebrospinal fluid (CSF) at study entry were available in all cases. Baseline brain MRI, FDG-PET, and PiB-PET data were available in the majority of participants. Relationship between baseline AD biomarkers and longitudinal change in cognition was assessed using Cox proportional hazard regression and linear mixed models.

Results: 14% participants increased their global Clinical Dementia Rating (CDR) score from 0 to 0.5 during follow-up. A CDR score increase was associated with higher baseline CSF t-Tau and p-Tau181, higher global cortical PiB retention, and lower hippocampal volume. The combination of high CSF t-Tau and low Aβ42 or low hippocampal volume was more strongly related to cognitive outcome than each single biomarker. Higher CSF t-Tau was the only biomarker associated with subsequent decline in MMSE score.

Conclusions: Baseline CSF t-Tau and p-Tau181, in vivo amyloid load, and hippocampal volume were all independently associated with future decline in cognition. The discriminatory ability of these biomarkers to predict risk of cognitive decline, however, was only modest.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5773095PMC
http://dx.doi.org/10.3233/JAD-170511DOI Listing

Publication Analysis

Top Keywords

csf t-tau
16
alzheimer's disease
12
hippocampal volume
12
future decline
8
older adults
8
risk cognitive
8
cognitive decline
8
change cognition
8
cdr score
8
baseline csf
8

Similar Publications

Background: α-Synuclein (α-Syn) pathology is present in 30-50 % of Alzheimer's disease (AD) patients, and its interactions with tau proteins may further exacerbate pathological changes in AD. However, the specific role of different aggregation forms of α-Syn in the progression of AD remains unclear.

Objectives: To explore the relationship between various aggregation types of CSF α-Syn and Alzheimer's disease progression.

View Article and Find Full Text PDF

Decreased serum PF4 levels correlate with cognitive decline and CSF biomarkers in Alzheimer's disease in a Chinese cohort.

Exp Gerontol

January 2025

Department of Neurology and Center for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing 400042, China.

Background: Platelet factor 4 (PF4), a chemotactic factor secreted from the α-granules of platelets, has recently been proved to mitigate neuroinflammation and improve aging-related cognition decline, which may be involved in Alzheimer's disease (AD).

Objective: This study aims to investigate the alterations of serum PF4 levels in AD, the correlation between serum PF4 and β-amyloid (Aβ) and tau levels in cerebrospinal fluid (CSF), and the potential diagnostic utility of PF4 in AD.

Methods: A cross-sectional study was conducted involving 38 amyloid-positive AD patients and 50 cognitively normal controls.

View Article and Find Full Text PDF

Fluid biomarkers play important roles in many aspects of neurodegenerative diseases, such as Huntington's disease (HD). However, a main question relates to how well levels of biomarkers measured in CSF are correlated with those measured in peripheral fluids, such as blood or saliva. In this study, we quantified levels of four neurodegenerative disease-related proteins, neurofilament light (NfL), total tau (t-tau), glial fibrillary acidic protein (GFAP) and YKL-40 in matched CSF, plasma and saliva samples from Huntingtin (HTT) gene-positive individuals (n = 21) using electrochemiluminescence assays.

View Article and Find Full Text PDF

Association of Favorable Cerebrospinal Fluid Markers With Reversion of Mild Cognitive Impairment Due to Parkinson's Disease.

J Neuropsychiatry Clin Neurosci

January 2025

Department of Psychology, California State University, San Bernardino (Ryczek, Rivas, Hemphill, Zanotelli, Renteria, Jones); Department of Neurology, Division of Movement Disorders, Loma Linda University Health System, Loma Linda, Calif. (Dashtipour); Center on Aging, California State University, San Bernardino (Jones).

Objective: Cognitive impairment is a common nonmotor symptom among individuals with Parkinson's disease (PD). Although cognitive impairment generally develops progressively, individuals with PD-associated mild cognitive impairment (PD-MCI) may revert to being cognitively normal (CN), which is referred to as PD-MCI reversion. Previous studies are inconsistent in whether PD-MCI reverters are at greater risk for PD-MCI recurrence relative to CN individuals.

View Article and Find Full Text PDF

A major challenge in the development of more effective therapeutic strategies for Alzheimer's disease (AD) is the identification of molecular mechanisms linked to specific pathophysiological features of the disease. Importantly AD has a two-fold higher incidence in women than men and a protracted prodromal phase characterized by amnestic mild-cognitive impairment (aMCI) suggesting that biological processes occurring early can initiate vulnerability to AD. Here, we used a sample of 125 subjects from two independent study cohorts to determine the levels in plasma (the most accessible specimen) of two essential mitochondrial markers acetyl-L-carnitine (LAC) and its derivative free-carnitine motivated by a mechanistic model in rodents in which targeting mitochondrial metabolism of LAC leads to the amelioration of cognitive function and boosts epigenetic mechanisms of gene expression.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!