Focal chondral defects are common in the patellofemoral (PF) joint and can significantly impair the quality of life. The autologous chondrocytes implantation (ACI) technique has evolved over the past 20 years: the first-generation technique involves the use of a periosteal patch, the second-generation technique (collagen-cover) uses a type I/III collagen membrane, and the newest third-generation technique seeds and cultivates the collagen membrane with chondrocytes prior to implantation and is referred to as matrix-induced autologous chondrocyte implantation. Particulated juvenile allograft cartilage (PJAC) (DeNovo NT) is minced cartilage allograft from juvenile donors. A thorough physical exam is important, especially for issues affecting the PF joint, to isolate the location and source of pain, and to identify associated pathologies. Imaging studies allow further characterization of the lesions and identification of associated pathologies and alignment. Conservative management should be exhausted before proceeding with surgical treatment. Steps of surgical treatment are diagnostic arthroscopy and biopsy, chondrocytes culture and chondrocyte implantation for the three generations of ACI, and diagnostic arthroscopy and implantation for PJAC. The techniques and their outcomes will be discussed in this article.

Download full-text PDF

Source
http://dx.doi.org/10.1055/s-0037-1607294DOI Listing

Publication Analysis

Top Keywords

chondrocyte implantation
12
techniques outcomes
8
autologous chondrocytes
8
chondrocytes implantation
8
implantation particulated
8
particulated juvenile
8
juvenile allograft
8
allograft cartilage
8
collagen membrane
8
associated pathologies
8

Similar Publications

Purpose: This study aimed to evaluate the effectiveness and safety of combination treatment with thread-embedding acupuncture (TEA) and electroacupuncture (EA) in patients with persistent knee pain after arthroscopic surgery, autologous chondrocyte implantation, or autologous osteochondral transplantation.

Patients And Methods: Twelve patients with knee osteoarthritis (KOA) who experienced postoperative pain were randomized to either the treatment group (TG) or control group (CG) in a 1:1 ratio. The TG received TEA once a week for four sessions and EA twice a week for eight sessions while continuing usual care, defined as standard conventional treatments.

View Article and Find Full Text PDF

Osteochondral defects (OCD) pose a significant clinical challenge due to the limited self-repair capacity of cartilage, leading to pain, joint dysfunction, and progression to osteoarthritis. Cellular implantations of adult mesenchymal stem cells (MSCs) enhanced with treatment of factors, such as small molecule Kartogenin (KGN) to promote chondrogenic differentiation, are promising but these cells often encounter hypertrophy during differentiation, compromising long-term stability. Induced pluripotent stem cell-derived MSCs (iMSCs) offer greater proliferative and differentiation capacity than MSCs and may provide a superior source of cells for cartilage repair.

View Article and Find Full Text PDF

Advancement of 3D biofabrication in repairing and regeneration of cartilage defects.

Biofabrication

January 2025

Department of Orthopaedics, Tangdu Hospital Fourth Military Medical University, 569 Xinsi Road, Baqiao District, Xi 'an City, Xi'an, Shaanxi, 710038, CHINA.

Three-dimensional (3D) bioprinting, an additive manufacturing technology, fabricates biomimetic tissues that possess natural structure and function. It involves precise deposition of bioinks, including cells, and bioactive factors, on basis of computer-aided 3D models. Articular cartilage injurie, a common orthopedic issue.

View Article and Find Full Text PDF

A meniscus injury is a common cartilage disease of the knee joint. Despite the availability of various methods for the treatment of meniscal injuries, the poor regenerative capacity of the meniscus often necessitates resection, leading to the accelerated progression of osteoarthritis. Advances in tissue engineering have introduced meniscal tissue engineering as a potential treatment option.

View Article and Find Full Text PDF

Digital light processing printing of non-modified protein-only compositions.

Mater Today Bio

February 2025

Institute of Chemistry and Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel.

This study explores the utilization of digital light processing (DLP) printing to fabricate complex structures using native gelatin as the sole structural component for applications in biological implants. Unlike approaches relying on synthetic materials or chemically modified biopolymers, this research harnesses the inherent properties of gelatin to create biocompatible structures. The printing process is based on a crosslinking mechanism using a di-tyrosine formation initiated by visible light irradiation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!