The activity size distribution of the Equilibrium-Equivalent Concentration (EER) of 222Rn is one of the most important parameters for the estimation of radiation dose by inhalation of radon decay products. A series of measurements of the EER activity size distribution were performed by the screen diffusion battery in Radon-Aerosol chamber (10 m3) at the National Institute for Nuclear, Chemical, and Biological Protection (SUJCHBO). These measurements were performed at different levels of radon concentration. For this study, the Graded Screen Array Diffusion Battery (GSA DB), developed by the SUJCHBO (based on Earl Knutson and Robert F Holub design), consists of 10 screens and backup filter used to collect all particles that penetrated the screens. The measuring range of this GSA DB allows measuring the radioactive nanoaerosols in the size range from 0.5 to 100 nm. The Earl Knutson algorithm was used for EER activity size distribution evaluation. The results of EER activity size distribution were subsequently compared with the aerosol particle size distribution measured by Scanning Mobility Particle Sizer Spectrometer (SMPS 3936 N, TSI Inc., MN, USA).

Download full-text PDF

Source
http://dx.doi.org/10.1093/rpd/ncx157DOI Listing

Publication Analysis

Top Keywords

size distribution
20
activity size
16
eer activity
12
diffusion battery
8
earl knutson
8
size
6
distribution
5
simultaneous measurements
4
measurements nanoaerosols
4
nanoaerosols radioactive
4

Similar Publications

Culturing living cells in three-dimensional environments increases the biological relevance of laboratory experiments, but requires solutes to overcome a diffusion barrier to reach the centre of cellular constructs. We present a theoretical and numerical investigation that brings a mechanistic understanding of how microfluidic culture conditions, including chamber size, inlet fluid velocity and spatial confinement, affect solute distribution within three-dimensional cellular constructs. Contact with the chamber substrate reduces the maximally achievable construct radius by 15%.

View Article and Find Full Text PDF

Experimental measurements of particle deposition in the human nasal airway.

Int J Pharm

January 2025

School of Engineering, Faculty of Science and Engineering, Macquarie University, Sydney, NSW 2109, Australia.

Intranasal drug delivery is a promising non-invasive method for administering both local and systemic medications. While previous studies have extensively investigated the effects of particle size, airflow dynamics, and deposition locations on deposition efficiency, they have not focused on the thickness of deposited particles, which can significantly affect drug dissolution, absorption and therapeutic efficacy. This study investigates the deposition patterns of dry powder particles within the nasal airway, specifically examining how factors such as flow rates, particle size, and particle cohesiveness influence deposition patterns and their thickness.

View Article and Find Full Text PDF

High-density lipoprotein (HDL) particle diameter distribution is informative in the diagnosis of many conditions, including Alzheimer's disease (AD). However, obtaining an accurate HDL size measurement is challenging. We demonstrated the utility of measuring the diameter of more than 1,800,000 HDL particles with the deep learning model YOLOv7 (you only look once) from micrographs of 183 HDL samples, including patients with dementia or normal cognition (controls).

View Article and Find Full Text PDF

Understanding the distribution and drivers of microplastics (MPs) in remote and sensitive environments is essential for assessing their ecological impacts and devising mitigation strategies. This study investigates the distribution and characteristics of MPs in streams and sediments of the Mt. Everest region.

View Article and Find Full Text PDF

Utilization of AF4 for characterizing complex nanomaterial drug products: Reexamining sample recovery and its impact on particle size distribution as a quality attribute.

J Chromatogr A

January 2025

Office of Pharmaceutical Quality Research, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland 20993, USA. Electronic address:

Asymmetrical flow field-flow fractionation (AF4) with multi-detection has continued to gain wider acceptance for characterizing complex drug products. An important quality attribute for these products is the measurement of the particle size distribution (PSD). Current limitations of established procedures (e.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!