Background: Besides environmental risk factors, genetic factors play a crucial role in the pathogenesis of primary hypertension. The current study is to unravel whether hypertensive phenotypes vary in mice with different genetic background.

Methods: Hypertension was induced in C57BL/6J (B6), DBA/2J (D2), and 25 BXD strains by administrating angiotensin (Ang)II (2.5 mg/kg/day infused by osmotic minipump) for 4 weeks. Systolic blood pressure was monitored before (baseline) and after 4 weeks of AngII treatment by tail cuff. Cardiac and renal fibrosis was evaluated by picrosirius red staining and collagen volume fraction (CVF) was quantitated using imaging analyzing system; cardiac transforming growth factor (TGF)-β gene expression was monitored by RT-PCR, and inflammatory response was detected by immunohistochemical ED-1 staining.

Results: AngII infusion caused hypertension in all strains. However, blood pressure elevation was more evident in the D2 strain than the B6 group, while it was widely variable among BXD strains. Furthermore, chronic AngII treatment lead to development of hypertensive cardiac and renal diseases. Cardiac and renal CVF levels in the D2 strain was significantly higher than the B6 cohort, whereas these varied vastly across BXD strains. Moreover, cardiac TGF-β mRNA levels were markedly diverse among various mouse strains.

Conclusion: Our study unequivocally demonstrates that in response to AngII, BXDs with different genetic background expressed hypertension phenotypes with varied degree in severity. It implicates that genomics contribute to pathogenesis of primary hypertension. Building upon the genotype and hypertensive phenotypes, the BXD cohort can be further exploited experimentally to identify genes that influence blood pressure.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5861568PMC
http://dx.doi.org/10.1093/ajh/hpx144DOI Listing

Publication Analysis

Top Keywords

hypertensive phenotypes
12
bxd strains
12
blood pressure
12
cardiac renal
12
phenotypes bxd
8
pathogenesis primary
8
primary hypertension
8
angii treatment
8
bxd
5
strains
5

Similar Publications

Background: Delays in diagnosing rare genetic disorders often arise due to limited awareness and systemic challenges in primary care. This case highlights the importance of a holistic approach to patient care, encompassing timely detection and comprehensive evaluation of clinical features.

Methods: We report the case of a 21-year-old Ecuadorian male with facial and hand dysmorphias, cardiomegaly, pulmonary hypertension, and patent ductus arteriosus (PDA).

View Article and Find Full Text PDF

Genetic evidence for the causal effect of clonal hematopoiesis on pulmonary arterial hypertension.

BMC Cardiovasc Disord

January 2025

Department of Respiratory and Critical Care Medicine, The Second Hospital of Hebei Medical University, 215 Heping West Road, Shijiazhuang, Hebei, China.

Background: Pulmonary arterial hypertension (PAH) is a severe and progressive cardiovascular disease. While potential links between clonal hematopoiesis (CH) and cardiovascular diseases have been identified, the causal relationship between CH and PAH remains unclear. This study aims to investigate the causal effect of CH on the risk of PAH using a two-sample Mendelian randomization (MR) approach.

View Article and Find Full Text PDF

Background: Pulmonary arterial hypertension (PAH) is an incurable disease initiated by endothelial dysfunction, secondary to vascular inflammation and occlusive pulmonary arterial vascular remodeling, resulting in elevated pulmonary arterial pressure and right heart failure. Previous research has reported that dysfunction of type 2 bone morphogenetic protein receptor (BMPR2) signaling pathway in endothelium is inclined to prompt inflammation in PAH models, but the underlying mechanism of BMPR2 deficiency-mediated inflammation needs further investigation. This study was designed to investigate whether BMPR2 deficiency contributes to pulmonary arterial hypertension via the NLRP3 (NOD-like receptor family protein 3)/GSDME (gasdermin E)-mediated pyroptosis pathway.

View Article and Find Full Text PDF

Heart failure with preserved ejection fraction (HFpEF) is defined by heart failure (HF) with a left ventricular ejection fraction (LVEF) of at least 50%. HFpEF has a complex and heterogeneous pathophysiology with multiple co-morbidities contributing to its presentation. Establishing the diagnosis of HFpEF can be challenging.

View Article and Find Full Text PDF

Gut Microbiota Metabolites Sensed by Host GPR41/43 Protect Against Hypertension.

Circ Res

January 2025

Hypertension Research Laboratory, School of Biological Sciences (R.R.M., T.Z., E.D., L.X., A.B.-W., H.A.J., M.N., M.P., K.C.L., W.Q., J.A.O.D., F.Z.M.).

Background: Fermentation of dietary fiber by the gut microbiota leads to the production of metabolites called short-chain fatty acids, which lower blood pressure and exert cardioprotective effects. Short-chain fatty acids activate host signaling responses via the functionally redundant receptors GPR41 and GPR43, which are highly expressed by immune cells. Whether and how these receptors protect against hypertension or mediate the cardioprotective effects of dietary fiber remains unknown.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!