Long non-coding RNAs (lncRNAs) have multiple functions in gene regulation and during cellular processes. However, the functional roles of lncRNAs in colorectal cancer (CRC) have not yet been well understood. In our previous study, we demonstrated that sTLR4/MD-2 complex can inhibit CRC in vitro and in vivo by targeting LPS. Therefore, the aim of the present study is to investigate the expression of lncRNA H19 in CRC and to evaluate its effect on the inhibition of sTLR4/MD-2 complex. The expression of H19 is measured in 63 CRC tumor tissues and adjacent normal tissues by quantitative real-time PCR (qRT-PCR). The effects of H19 on migration and invasiveness are evaluated by wound healing assay, migration and invasion assays. Results showed that H19 is significantly overexpressed in cancerous tissues and CRC cell lines compared with adjacent normal tissues and a normal human intestinal epithelial cell line. Moreover, H19 overexpression is closely associated with CRC patients. Our in vitro data indicated that knockdown of H19 inhibits the migration and invasiveness of CRC cells. And in vivo sTLR4/MD-2 complex inhibits tumor growth in mice and the expression of H19 is down-regulated. These results suggest that sTLR4/MD-2 complex inhibits CRC migration and invasiveness in vitro and in vivo by lncRNA H19 down-regulation.

Download full-text PDF

Source
http://dx.doi.org/10.1093/abbs/gmx105DOI Listing

Publication Analysis

Top Keywords

stlr4/md-2 complex
20
migration invasiveness
16
complex inhibits
12
vitro vivo
12
lncrna h19
12
h19
9
colorectal cancer
8
invasiveness vitro
8
vivo lncrna
8
h19 down-regulation
8

Similar Publications

Long non-coding RNAs (lncRNAs) have multiple functions in gene regulation and during cellular processes. However, the functional roles of lncRNAs in colorectal cancer (CRC) have not yet been well understood. In our previous study, we demonstrated that sTLR4/MD-2 complex can inhibit CRC in vitro and in vivo by targeting LPS.

View Article and Find Full Text PDF

Colorectal cancer (CRC) is aggressive and associated with TLR4-MD-2 signaling. Toll-like receptor 4 (TLR4) and myeloid differentiation protein 2 (MD-2) were highly expressed in human CRC. The soluble form of extracellular TLR4 domain (sTLR4) and MD-2 may have important roles in binding lipopolysaccharide (LPS).

View Article and Find Full Text PDF

Characterization of monoclonal antibodies to human soluble MD-2 protein.

Hybridoma (Larchmt)

December 2006

Veterans Medical Research Foundation, San Diego, California, USA.

Toll-like receptors (TLRs) are mammalian innate immune recognition receptors that are activated by pathogen associated molecular patterns (PAMPs). TLR4 is the signaling molecule of the lipopolysaccharide (LPS) receptor complex. TLR4 associates with its adapter molecule, MD-2, which is absolutely required for LPS-induced activation of TLR4.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!