Motivation: Mass cytometry or CyTOF is an emerging technology for high-dimensional multiparameter single cell analysis that overcomes many limitations of fluorescence-based flow cytometry. New methods for analyzing CyTOF data attempt to improve automation, scalability, performance and interpretation of data generated in large studies. Assigning individual cells into discrete groups of cell types (gating) involves time-consuming sequential manual steps, untenable for larger studies.
Results: We introduce DeepCyTOF, a standardization approach for gating, based on deep learning techniques. DeepCyTOF requires labeled cells from only a single sample. It is based on domain adaptation principles and is a generalization of previous work that allows us to calibrate between a target distribution and a source distribution in an unsupervised manner. We show that DeepCyTOF is highly concordant (98%) with cell classification obtained by individual manual gating of each sample when applied to a collection of 16 biological replicates of primary immune blood cells, even when measured across several instruments. Further, DeepCyTOF achieves very high accuracy on the semi-automated gating challenge of the FlowCAP-I competition as well as two CyTOF datasets generated from primary immune blood cells: (i) 14 subjects with a history of infection with West Nile virus (WNV), (ii) 34 healthy subjects of different ages. We conclude that deep learning in general, and DeepCyTOF specifically, offers a powerful computational approach for semi-automated gating of CyTOF and flow cytometry data.
Availability And Implementation: Our codes and data are publicly available at https://github.com/KlugerLab/deepcytof.git.
Contact: yuval.kluger@yale.edu.
Supplementary Information: Supplementary data are available at Bioinformatics online.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5860171 | PMC |
http://dx.doi.org/10.1093/bioinformatics/btx448 | DOI Listing |
Biomed Phys Eng Express
January 2025
Applied Sciences, Indian Institute of Information Technology Allahabad, Deoghat, Jhalwa, Allahabad, 211012, INDIA.
Photoacoustic tomography (PAT) is a non-destructive, non-ionizing, and rapidly expanding hybrid biomedical imaging technique, yet it faces challenges in obtaining clear images due to limited data from detectors or angles. As a result, the methodology suffers from significant streak artifacts and low-quality images. The integration of deep learning (DL), specifically convolutional neural networks (CNNs), has recently demonstrated powerful performance in various fields of PAT.
View Article and Find Full Text PDFACS Sens
January 2025
Department of Physics and Astronomy, Franklin College of Arts and Sciences, The University of Georgia, Athens, Georgia 30602, United States.
Multiple respiratory viruses can concurrently or sequentially infect the respiratory tract, making their identification crucial for diagnosis, treatment, and disease management. We present a label-free diagnostic platform integrating surface-enhanced Raman scattering (SERS) with deep learning for rapid, quantitative detection of respiratory virus coinfections. Using sensitive silica-coated silver nanorod array substrates, over 1.
View Article and Find Full Text PDFJ Chem Inf Model
January 2025
Geneis (Beijing) Co. Ltd., Beijing 100102, China.
Identification of potential drug-target interactions (DTIs) is a crucial step in drug discovery and repurposing. Although deep learning effectively deciphers DTIs, most deep learning-based methods represent drug features from only a single perspective. Moreover, the fusion method of drug and protein features needs further refinement.
View Article and Find Full Text PDFInvest Radiol
January 2025
From the Department of Radiology, Ulsan University Hospital, Ulsan, Republic of Korea (T.Y.L.); Department of Radiology, University of Ulsan College of Medicine, Seoul, Republic of Korea (T.Y.L.); Department of Radiology, Seoul National University Hospital, Seoul, Republic of Korea (J.H.Y., H.K., J.M.L.); Department of Radiology, Seoul National University College of Medicine, Seoul, Republic of Korea (J.H.Y., S.H.P., J.M.L.); Department of Radiology, Inje University Busan Paik Hospital, Busan, Republic of Korea (J.Y.P.); Department of Radiology, Seoul National University Bundang Hospital, Seongnam, Republic of Korea (S.H.P.); Department of Radiology, Hanyang University College of Medicine, Seoul, Republic of Korea (C.L.); Division of Biostatistics, Medical Research Collaborating Center, Seoul National University Hospital, Seoul, Republic of Korea (Y.C.); and Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Republic of Korea (J.M.L.).
Objective: The aim of this study was to intraindividually compare the conspicuity of focal liver lesions (FLLs) between low- and ultra-low-dose computed tomography (CT) with deep learning reconstruction (DLR) and standard-dose CT with model-based iterative reconstruction (MBIR) from a single CT using dual-split scan in patients with suspected liver metastasis via a noninferiority design.
Materials And Methods: This prospective study enrolled participants who met the eligibility criteria at 2 tertiary hospitals in South Korea from June 2022 to January 2023. The criteria included (a) being aged between 20 and 85 years and (b) having suspected or known liver metastases.
PLoS One
January 2025
Department of Radiology, Yantaishan Hospital, Yantai, Shandong, China.
Diabetic retinopathy, a retinal disorder resulting from diabetes mellitus, is a prominent cause of visual degradation and loss among the global population. Therefore, the identification and classification of diabetic retinopathy are of utmost importance in the clinical diagnosis and therapy. Currently, these duties are extensively carried out by manual examination utilizing the human visual system.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!