OBJECTIVE To evaluate gastrointestinal transit times in red-tailed hawks (Buteo jamaicensis) by use of contrast fluoroscopic imaging and investigate the effect of falconry hooding in these hawks on gastrointestinal transit time. DESIGN Prospective, randomized, blinded, complete crossover study. ANIMALS 9 healthy red-tailed hawks. PROCEDURES Hawks were gavage-fed a 30% weight-by-volume barium suspension (25 mL/kg [11.3 mL/lb]) into the crop. Fluoroscopic images were obtained at multiple time points after barium administration. Time to filling and emptying of various gastrointestinal tract organs and overall transit time were measured. The effect of hooding (hooded vs nonhooded) on these variables was assessed in a randomized complete crossover design. RESULTS In nonhooded birds, overall gastrointestinal transit time ranged from 30 to 180 minutes (mean ± SD, 100 ± 52 min). Time to complete crop emptying ranged from 30 to 180 minutes (83 ± 49 min). Contrast medium was present in the ventriculus in all birds within 5 minutes of administration and in the small intestines within 5 to 15 minutes (median, 5 min). Hooding of red-tailed hawks resulted in a significant delay of complete crop emptying (no hood, 83 ± 49 minutes; hood, 133 ± 48 minutes), but no significant effects of hooding were found on other measured variables. CONCLUSIONS AND CLINICAL RELEVANCE These results indicated that overall gastrointestinal transit times are faster in red-tailed hawks than has been reported for psittacines and that the use of a falconry hood in red-tailed hawks may result in delayed crop emptying. Hooding did not exert significant effects on overall gastrointestinal transit time in this raptorial species.

Download full-text PDF

Source
http://dx.doi.org/10.2460/javma.251.9.1064DOI Listing

Publication Analysis

Top Keywords

gastrointestinal transit
24
red-tailed hawks
24
transit time
16
transit times
12
crop emptying
12
contrast fluoroscopic
8
hawks
8
hawks buteo
8
buteo jamaicensis
8
complete crossover
8

Similar Publications

The beneficial properties of probiotics have always been a point of interest. Probiotics play a major role in maintaining the health of Gastrointestinal Tract (GIT), a healthy digestive system is responsible for modulating all other functions of the body. The effectiveness of probiotics can be enhanced by formulating them with prebiotics the formulation thus formed is referred to as synbiotics.

View Article and Find Full Text PDF

Children with neurodegenerative disease often have debilitating gastrointestinal symptoms. We hypothesized that this may be due at least in part to underappreciated degeneration of neurons in the enteric nervous system (ENS), the master regulator of bowel function. To test this hypothesis, we evaluated mouse models of neuronal ceroid lipofuscinosis type 1 and 2 (CLN1 and CLN2 disease, respectively), neurodegenerative lysosomal storage disorders caused by deficiencies in palmitoyl protein thioesterase-1 and tripeptidyl peptidase-1, respectively.

View Article and Find Full Text PDF

Advanced polymeric systems for colon drug delivery: from experimental models to market applications.

Soft Matter

January 2025

Department of Chemical Materials and Industrial Production (DICMaPI), University of Naples Federico II, P.le Tecchio 80, Naples 80125, Italy.

In recent years, nano and micro drug delivery systems targeting the colon have gained more attention due to increasing interest in treating colon diseases such as colorectal cancer and inflammatory bowel disease, , Crohn's disease and ulcerative colitis. Usually, nanocarriers are exploited for their enhanced permeability properties, allowing higher penetration effects and bioavailability, while microcarriers are primarily used for localized and sustained release. In bowel diseases, carriers must go into a delicate environment with a strict balance of gut bacteria (, colon), and natural or biodegradable polymers capable of ensuring lower toxicity are preferred.

View Article and Find Full Text PDF

Colon cancer is a leading cause of cancer-related morbidity and mortality worldwide, necessitating advancements in therapeutic strategies to improve outcomes. Current treatment modalities, including surgery, chemotherapy, and radiation, are limited by systemic toxicity, low drug utilization rates, and off-target effects. Colon-targeted drug delivery systems (CDDS) offer a promising alternative by leveraging the colon's unique physiology, such as near-neutral pH and extended transit time, to achieve localized and controlled drug release.

View Article and Find Full Text PDF

Background: The relationship between gut microbiota composition, lifestyles, and colonic transit time (CTT) remains poorly understood. This study investigated associations among gut microbiota profiles, diet, lifestyles, and CTT in individuals with subjective constipation.

Methods: We conducted a secondary analysis of data from our randomized clinical trial, examining gut microbiota composition, CTT, and dietary intake in baseline and final assessments of 94 participants with subjective constipation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!