The feasibility of open-pore polyurethane (PU) foam as packing material for wet chemical scrubber was tested for NH and HS removals. The foam is inexpensive, light-weight, highly porous (low pressure drop) and provides large surface area per unit volume, which are desirable properties for enhanced gas/liquid mass transfer. Conventional HCl/HOCl (for NH) and NaOH/NaOCl (for HS) scrubbing solutions were used to absorb and oxidize the gases. Assessment of the wet chemical scrubbers reveals that pH and ORP levels are important to maintain the gas removal efficiencies >95%. A higher re-circulation rate of scrubbing solutions also proved to enhance the performance of the NH and HS columns. Accumulation of salts was confirmed by the gradual increase in total dissolved solids and conductivity values of scrubbing solutions. The critical elimination capacities at >95% gas removals were found to be 5.24 g NH-N/m-h and 17.2 g HS-S/m-h at an empty bed gas residence time of 23.6 s. Negligible pressure drops (< 4 mm HO) after continuous operation demonstrate the suitability of PU as a practical packing material in wet chemical scrubbers for NH and HS removals from high-volume dilute emissions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/10934529.2017.1366243 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, College of Environmental Science and Engineering, Hunan University, Changsha 410082, China.
Electrocatalytic dehalogenation is a promising method for the remediation of chlorinated organic pollutants. The dehalogenation performance is controlled by catalytic activity, and the underlying electrocatalytic dehalogenation mechanisms need to be carefully investigated for guiding the design of catalyst. Here we report the preparation of a new Pd-based catalyst with a nanosheet structure (Pd NS) by a simple wet-chemical reduction method.
View Article and Find Full Text PDFFoods
January 2025
Instituto Nacional de Ciência e Tecnologia do Café (INCT), Lavras CEP 37203-202, MG, Brazil.
One strategy for adding unique characteristics and flavors to improve coffee quality is the selection of starter microorganisms. Here, we aimed to evaluate the effect of LNFCA11 and B10 as starter cultures on the quality of four different wet-fermented coffee varieties. Microbiological, molecular, and chemical analyses were carried out to identify yeast, bacteria, volatile compounds, carbohydrates and bioactive compounds in coffee.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan.
Phosphate invert glasses (PIGs) have been attracting attention as materials for bone repair. PIGs have a high flexibility in chemical composition because they are composed of orthophosphate and pyrophosphate and can easily incorporate various ions in their glass networks. In our previous work, incorporation of niobium (Nb) into melt-quench-derived PIGs was effective in terms of controlling their ion release, and Nb ions promoted the activity of osteoblast-like cells.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500 Semenyih, Selangor, Malaysia. Electronic address:
Polymer-based scaffolds with bioactive materials offer great potential in bone tissue engineering. Polyethylene glycol diacrylate (PEGDA) scaffolds fabricated via liquid crystal display 3D printing technique lack inherent osteoconductivity. To improve such properties, chitosan of 10 and 20 wt% and nanohydroxyapatite (nHA) (3-10 wt%) were incorporated into PEGDA scaffolds.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Shandong Laboratory of Advanced Materials and Green Manufacturing at Yantai, Yantai 264006, PR China. Electronic address:
The pursuit of multifunctional soybean protein isolate (SPI)-based adhesives with high strength, water resistance, and resistance to mildew and flame remains a formidable scientific challenge. Inspired by mussels, in this work, quaternary ammonium salted hyperbranched polyamide (QHBPA) and polydopamine (PDA) were incorporated onto the surface of MXene. The synthesized hybrid material, namely Q-MXene, accompanied with phosphorylated chitosan (PCS), was subsequently integrated into the SPI-based adhesive to synergistically improve its performance via organic-inorganic hybridization techniques.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!