Visible-light-driven water splitting was investigated in a dye sensitized photoelectrosynthesis cell (DSPEC) based on a photoanode with a phosphonic acid-derivatized donor-π-acceptor (D-π-A) organic chromophore, 1, and the water oxidation catalyst [Ru(bda)(4-O(CH)P(OH)-pyr)], 2, (pyr = pyridine; bda = 2,2'-bipyridine-6,6'-dicarboxylate). The photoanode was prepared by using a layering strategy beginning with the organic dye anchored to an FTO|core/shell electrode, atomic layer deposition (ALD) of a thin layer (<1 nm) of TiO, and catalyst binding through phosphonate linkage to the TiO layer. Device performance was evaluated by photocurrent measurements for core/shell photoanodes, with either SnO or nanoITO core materials, in acetate-buffered, aqueous solutions at pH 4.6 or 5.7. The absolute magnitudes of photocurrent changes with the core material, TiO spacer layer thickness, or pH, observed photocurrents were 2.5-fold higher in the presence of catalyst. The results of transient absorption measurements and DFT calculations show that electron injection by the photoexcited organic dye is ultrafast promoted by electronic interactions enabled by orientation of the dye's molecular orbitals on the electrode surface. Rapid injection is followed by recombination with the oxidized dye which is 95% complete by 1.5 ns. Although chromophore decomposition limits the efficiency of the DSPEC devices toward O production, the flexibility of the strategy presented here offers a new approach to photoanode design.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.7b11905DOI Listing

Publication Analysis

Top Keywords

water oxidation
8
atomic layer
8
layer deposition
8
chromophore-catalyst assembly
4
assembly water
4
oxidation prepared
4
prepared atomic
4
deposition visible-light-driven
4
visible-light-driven water
4
water splitting
4

Similar Publications

Fluoride (F), as a natural element found in a wide range of sources such as water and certain foods, has been proven to be beneficial in preventing dental caries, but concerns have been raised regarding its potential deleterious effects on overall health. Sodium fluoride (NaF), another form of F, has the ability to accumulate in reproductive organs and interfere with hormonal regulation and oxidative stress pathways, contributing to reproductive toxicity. While the exact mechanisms of F-induced reproductive toxicity are not fully understood, this review aims to elucidate the mechanisms involved in testicular and ovarian injury.

View Article and Find Full Text PDF

Effects of different water and fertilizer treatments on the matrix properties and plant growth of tailings waste.

Sci Rep

January 2025

Land and Resources Survey Center, Hebei Provincial Geology and Mineral Exploration and Development Bureau, Shijiazhuang, 050081, China.

Vegetation ecological restoration technology is widely regarded as an environmentally sustainable and green technology for the remediation of mineral waste. The appropriate ratio of amendments can improve the substrate environment for plant growth and increase the efficiency of ecological restoration. Herbs and shrubs are preferred for vegetation restoration in abandoned mines because of their rapid establishment and easy management.

View Article and Find Full Text PDF

The high performance of two-dimensional (2D) channel membranes is generally achieved by preparing ultrathin or forming short channels with less tortuous transport through self-assembly of small flakes, demonstrating potential for highly efficient water desalination and purification, gas and ion separation, and organic solvent waste treatment. Here, we report the construction of vertical channels in graphene oxide (GO) membrane based on a substrate template with asymmetric pores. The membranes achieved water permeance of 2647 L m h bar while still maintaining an ultrahigh rejection rate of 99.

View Article and Find Full Text PDF

Designing efficient Ruthenium-based catalysts as practical anodes is of critical importance in proton exchange membrane water electrolysis. Here, we develop a self-assembly technique to synthesize 1 nm-thick rutile-structured high-entropy oxides (RuIrFeCoCrO) from naked metal ions assembly and oxidation at air-molten salt interface. The RuIrFeCoCrO requires an overpotential of 185 mV at 10 m A cm and maintains the high activity for over 1000 h in an acidic electrolyte via the adsorption evolution mechanism.

View Article and Find Full Text PDF

This study successfully synthesised and characterised composites combining chitosan (CH), carboxymethyl cellulose (CMC), and various flavonoids (Fla). This innovative approach demonstrates the potential for developing functional materials with antioxidant and food preservation properties. The composites CH-Fla-CMC (1-5) was characterised using advanced techniques such as FT-IR, UV-Vis, XRD, SEM, TEM, and TGA, providing robust data on their structural, morphological, and thermal properties.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!