Three-dimensional proton magnetic resonance spectroscopic imaging (MRSI) is a powerful non-invasive tool for characterizing spatial variations in metabolic profiles for patients with glioma. Metabolic parameters obtained using this technique have been shown to predict treatment response, disease progression, and transformation to a more malignant phenotype. The availability of ultra-high-field MR systems has the potential to improve the characterization of metabolites. The purpose of this study was to compare the metabolite profiles acquired with conventional long echo time (TE) MRSI at 3T with those obtained with short TE MRSI at 3T and 7T in patients with glioma. The data acquisition parameters were optimized separately for each echo time and field strength to obtain volumetric coverage within clinically feasible data acquisition times of 5-10 min. While a higher field strength did provide better detection of metabolites with overlapping peaks, spatial coverage was reduced and the use of inversion recovery to reduce lipid precluded the detection of lipid in regions of necrosis. For serial evaluation of large, heterogeneous lesions, the use of 3T short TE MRSI may thus be preferred. Despite the limited number of metabolites that it is able to detect, the use of 3T long TE MRSI gives the best contrast in choline/N-acetyl aspartate between normal appearing brain and tumor and also allows the separate detection of lactate and lipid. It may therefore be preferred for serial evaluation of patients with high-grade glioma and for detection of malignant transformation in patients with low-grade glioma.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5771946PMC
http://dx.doi.org/10.1021/acschemneuro.7b00286DOI Listing

Publication Analysis

Top Keywords

echo time
12
patients glioma
12
long echo
8
magnetic resonance
8
resonance spectroscopic
8
spectroscopic imaging
8
short mrsi
8
data acquisition
8
field strength
8
serial evaluation
8

Similar Publications

Objective: This study aims to evaluate the efficacy of two free-breathing magnetic resonance imaging (MRI) sequences-spiral ultrashort echo time (spiral UTE) and radial volumetric interpolated breath-hold examination (radial VIBE).

Methods: Patients were prospectively enrolled between February 2021 and September 2022. All participants underwent both 3T MRI scanning, utilizing the radial VIBE sequence and spiral UTE sequence, as well as standard chest CT imaging.

View Article and Find Full Text PDF

Accelerated High-resolution T1- and T2-weighted Breast MRI with Deep Learning Super-resolution Reconstruction.

Acad Radiol

January 2025

Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany (N.M., C.L., A.S., A.I., T.D., L.B., D.K., C.C.P., A.L., J.A.L.).

Rationale And Objectives: To assess the performance of an industry-developed deep learning (DL) algorithm to reconstruct low-resolution Cartesian T1-weighted dynamic contrast-enhanced (T1w) and T2-weighted turbo-spin-echo (T2w) sequences and compare them to standard sequences.

Materials And Methods: Female patients with indications for breast MRI were included in this prospective study. The study protocol at 1.

View Article and Find Full Text PDF

Dual-polarity readout is a simple and robust way to mitigate Nyquist ghosting in diffusion-weighted echo-planar imaging but imposes doubled scan time. We here propose how dual-polarity readout can be implemented with little or no increase in scan time by exploiting an observed b-value dependence and signal averaging. The b-value dependence was confirmed in healthy volunteers with distinct ghosting at low b-values but of negligible magnitude at b = 1000 s/mm2.

View Article and Find Full Text PDF

Osteoarthritis (OA) is heterogeneous and involves structural changes in the whole joint, such as cartilage, meniscus/labrum, ligaments, and tendons, mainly with short T2 relaxation times. Detecting OA before the onset of irreversible changes is crucial for early proactive management and limit growing disease burden. The more recent advanced quantitative imaging techniques and deep learning (DL) algorithms in musculoskeletal imaging have shown great potential for visualizing "pre-OA.

View Article and Find Full Text PDF

Background: Right ventricular (RV) failure is a well-recognized pivotal prognostic factor of adverse outcomes in pulmonary artery hypertension (PAH), while RV dilation provides significant implications for adaptive or maladaptive changes. PAH is a predominant cause of mortality among patients with connective tissue disease (CTD). This study aims to elucidate the prognostic significance of RV morphology, as assessed by echocardiography (ECHO), in with CTD associated with PAH (CTD-PAH).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!