Protocols employing phenylboronic acid as a phase-transfer reagent for Fischer glycosidations in low-polarity organic solvents are described. In addition to providing rate acceleration, the formation of a substrate-derived boronic ester alters the course of the reaction by selective promotion of a furanoside- or pyranoside-selective pathway. Computational modeling of the relative energies of the glycoside-derived boronic esters provides results that are qualitatively consistent with the observed distributions of furanoside versus pyranoside products. The boronic esters that are obtained as direct products of these reactions serve as protected intermediates for the synthesis of functionalized glycosides. Complexation of particular diol groups by the boronic acid also enables selective transformations of mixtures of carbohydrates.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.joc.7b01880 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!