The extracellular matrix (ECM) constituting up to 20% of the organ volume is a significant component of the brain due to its instructive role in the compartmentalization of functional microdomains in every brain structure. The composition, quantity and structure of ECM changes dramatically during the development of an organism greatly contributing to the remarkably sophisticated architecture and function of the brain. Since fetal brain is highly plastic, we hypothesize that the fetal brain ECM may contain cues promoting neural growth and differentiation, highly desired in regenerative medicine. Thus, we studied the effect of brain-derived fetal and adult ECM complemented with matricellular proteins on cortical neurons using 3D bioengineered model of cortical brain tissue. The tested parameters included neuronal network density, cell viability, calcium signaling and electrophysiology. Both, adult and fetal brain ECM as well as matricellular proteins significantly improved neural network formation as compared to single component, collagen I matrix. Additionally, the brain ECM improved cell viability and lowered glutamate release. The fetal brain ECM induced superior neural network formation, calcium signaling and spontaneous spiking activity over adult brain ECM. This study highlights the difference in the neuroinductive properties of fetal and adult brain ECM and suggests that delineating the basis for this divergence may have implications for regenerative medicine.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5636008 | PMC |
http://dx.doi.org/10.1021/acsbiomaterials.5b00446 | DOI Listing |
J Neurosci
January 2025
Institute of Neuroimmunology, Slovak Academy of Science, 84510 Bratislava, Slovakia.
Extracellular matrix (ECM) is a network of macromolecules which has two forms - perineuronal nets (PNNs) and a diffuse ECM (dECM) - both influence brain development, synapse formation, neuroplasticity, CNS injury and progression of neurodegenerative diseases. ECM remodeling can influence extrasynaptic transmission, mediated by diffusion of neuroactive substances in the extracellular space (ECS). In this study we analyzed how disrupted PNNs and dECM influence brain diffusibility.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Baylor College of Medicine, Houston, TX, USA.
Background: Alzheimer's disease (AD) has a complex etiology where insults in multiple pathways conspire to disrupt neuronal function, yet molecular changes underlying AD remain poorly understood. Previously, we performed mass-spectrometry on post-mortem human brain tissue to identify >40 protein co-expression modules correlated to AD pathological and clinical traits. Module 42 has the strongest correlation to AD pathology and consists of 32 proteins including SMOC1, a predicted driver of network behavior and potential biomarker for AD.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Columbia University Irving Medical Center, New York, NY, USA.
Background: APOEε4 significantly increases the risk of developing Alzheimer's disease (AD). Cognitively healthy APOEε4-carriers exist, suggesting potential protective mechanisms against APOEε4. We hypothesized that some APOEε4-carriers may have genetic variations protecting them from developing APOEε4-mediated AD pathology.
View Article and Find Full Text PDFBackground: Large-scale unbiased proteomic profiling studies have identified a cluster of 31 proteins co-expressed with APP, which is termed the matrisome module 42 (M42). M42 is enriched in AD risk genes, including APOE, with mostly secreted proteins that bind heparin, collectively strongly correlate with the burden of brain pathology and cognitive trajectory, and localize to amyloid plaques in AD brain. For these reasons, M42 has been nominated as a novel therapeutic target for enabling drug discovery by our TREAT-AD Center.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
University of California, Irvine, Irvine, CA, USA.
Background: Condensed extracellular matrix structures called perineuronal nets (PNNs) preferentially enwrap the soma and stabilize proximal synapses of parvalbumin-expressing inhibitory neurons in the cortex, serving as a protective barrier against neurotoxins. While PNN structural integrity declines in the healthy aging brain, this reduction is exacerbated in Alzheimer's disease (AD). In the 5xFAD mouse model of amyloidosis, the elimination of microglia prevents reductions in PNN, suggesting microglia are responsible for the over-degradation of PNNs observed in AD.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!