X-linked spinal muscular atrophy (XL-SMA) results from mutations in the Ubiquitin-Like Modifier Activating Enzyme 1 ( ). Previously, four novel closely clustered mutations have been shown to cause this fatal infantile disorder affecting only males. These mutations, three missense and one synonymous, all lie within Exon15 of the gene, which contains the active adenylation domain (AAD). In this study, our group characterized the three known missense variants . Using a novel Uba1 assay and other methods, we investigated Uba1 adenylation, thioester, and transthioesterification reactions to determine possible biochemical effects of the missense variants. Our data revealed that only one of the three XL-SMA missense variants impairs the Ubiquitin-adenylating ability of Uba1. Additionally, these missense variants retained Ubiquitin thioester bond formation and transthioesterification rates equal to that found in the wild type. Our results demonstrate a surprising shift from the likelihood of these XL-SMA mutations playing a damaging role in Uba1's enzymatic activity with Ubiquitin, to other roles such as altering mRNA splicing via the disruption of splicing factor binding sites, similar to a mechanism in traditional SMA, or disrupting binding to other important binding partners. These findings help to narrow the search for the areas of possible dysfunction in the Ubiquitin-proteasome pathway that ultimately result in XL-SMA. Moreover, this investigation provides additional critical understanding of the mutations' biochemical mechanisms, vital for the development of future effective diagnostic assays and therapeutics.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5615770 | PMC |
http://dx.doi.org/10.12688/f1000research.11878.1 | DOI Listing |
QJM
January 2025
Medical Genetic Center, Guangdong Women and Children Hospital, Guangzhou, Guangdong, 510010, China.
Background: ALG8-congenital disorder of glycosylation (ALG8-CDG) is a rare inherited metabolic disorder leading to severe multisystem manifestations, with no reported prenatal patients to date.
Methods: We describe two fetuses from a single family with ALG8-CDG presenting with prenatal hydrops, undergoing comprehensive prenatal ultrasound, umbilical cord blood biochemistry, autopsy, placental pathology, and genetic testing.
Results: Prenatal ultrasound revealed fetal hydrops, skeletal anomalies, cardiac developmental abnormalities, cataracts, echogenic kidneys and bowel, oligohydramnios, choroid plexus cysts, and intrauterine growth restriction.
Br J Dermatol
January 2025
Department of Dermatology, Stanford University School of Medicine, Stanford, CA, USA.
Recessive dystrophic epidermolysis bullosa (RDEB) is a genetic disorder due to pathogenic variants in the COL7A1 gene. In this study we determined the association between different categories of COL7A1 variants and clinical disease severity in 236 RDEB patients in North America. Published reports or in-silico predictions were used to assess the impact of pathogenic variants in COL7A1 on type VII collagen (C7) protein function.
View Article and Find Full Text PDFOrphanet J Rare Dis
December 2024
Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
Background: Meier-Gorlin syndrome (MGORS) is a rare autosomal inherited form of primordial dwarfism. Pathogenic variants in 13 genes involved in DNA replication initiation have been identified in this disease, but homozygous intronic variants have never been reported. Additionally, whether growth hormone (GH) treatment can increase the height of children with MGORS is unclear.
View Article and Find Full Text PDFMitochondrion
January 2025
Organelle Biology and Cellular Ageing Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India. Electronic address:
Mitochondrial morphology is a result of regulated opposite events called fission and fusion and requires the GTPase, dynamin-related protein 1 (DRP1/Dnm1), or its homologs. A recent clinical report identified a heterozygous missense mutation in the human DRP1 that replaces Glycine (G) 149 with Arginine (R) and results in debilitating conditions in the patient. In this study, we mimicked this mutation in yeast Dnm1 (G178R) and investigated the impact of the pathogenic mutation on the protein's function.
View Article and Find Full Text PDFNeurology
February 2025
Department of Integrated Traditional Chinese and Western Medicine, The Third Affiliated Hospital of Soochow University, Changzhou, China.
Background And Objectives: Methylenetetrahydrofolate reductase (MTHFR) is a key enzyme that regulates folate and homocysteine metabolism. Genetic variation in has been implicated in cerebrovascular disease risk, although research in diverse populations is lacking. We thus aimed to investigate the effect of genetically predicted MTHFR activity on risk of ischemic stroke (IS) and its main subtypes using a multiancestry Mendelian randomization (MR) approach.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!