Unmet goals in the treatment of Acute Myocardial Infarction: Review.

F1000Res

Universidad Católica de Buenos Aires, Buenos Aires, Argentina.

Published: July 2017

Reperfusion therapy decreases myocardium damage during an acute coronary event and consequently mortality. However, there are unmet needs in the treatment of acute myocardial infarction, consequently mortality and heart failure continue to occur in about 10% and 20% of cases, respectively. Different strategies could improve reperfusion. These strategies, like generation of warning sign recognition and being initially assisted and transferred by an emergency service, could reduce the time to reperfusion. If the first electrocardiogram is performed en route, it can be transmitted and interpreted in a timely manner by a specialist at the receiving center, bypassing community hospitals without percutaneous coronary intervention capabilities. To administer thrombolytic therapy during transport to the catheterization laboratory could reduce time to reperfusion in cases with expected prolonged transport time to a percutaneous coronary intervention center or to a center without primary percutaneous coronary intervention capabilities with additional expected delay, known as pharmaco-invasive strategy. Myocardial reperfusion is known to produce damage and cell death, which defines the reperfusion injury. Lack of resolution of ST segment is used as a marker of reperfusion failure. In patients without ST segment resolution, mortality triples. It is important to note that, until recently, reperfusion injury and no-reflow were interpreted as a single entity and we should differentiate them as different entities; whereas no-reflow is the failure to obtain tissue flow, reperfusion injury is actually the damage produced by achieving flow. Therefore, treatment of no-reflow is obtained by tissue flow, whereas in reperfusion injury the treatment objective is protection of susceptible myocardium from reperfusion injury. Numerous trials for the treatment of reperfusion injury have been unsuccessful. Newer hypotheses such as " ", in which the interventional cardiologist assumes not only the treatment of the culprit vessel but also the way to reperfuse the myocardium at risk, could reduce reperfusion injury.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5532798PMC
http://dx.doi.org/10.12688/f1000research.10553.1DOI Listing

Publication Analysis

Top Keywords

reperfusion injury
28
reperfusion
13
percutaneous coronary
12
coronary intervention
12
treatment acute
8
acute myocardial
8
myocardial infarction
8
consequently mortality
8
reduce time
8
time reperfusion
8

Similar Publications

Dihydromyricetin (Dih), a naturally occurring flavonoid, has been identified to exert a protective effect against ischemia/reperfusion injury. However, the detailed mechanisms remain unclear. Here we investigated the biological role of Dih in preventing hypoxia/reoxygenation (H/R) injury in cardiomyocytes.

View Article and Find Full Text PDF

Recent studies have suggested that sVEGFR3 is involved in cardiac diseases by regulating lymphangiogenesis; however, results are inconsistent. The aim of this study was to investigate the function and mechanism of sVEGFR3 in myocardial ischemia/reperfusion injury (MI/RI). sVEGFR3 effects were evaluated in vivo in mice subjected to MI/RI, and in vitro using HL-1 cells exposed to oxygen-glucose deprivation/reperfusion.

View Article and Find Full Text PDF

Analysis of the protective effect of hydrogen sulfide over time in ischemic rat skin flaps.

Ann Chir Plast Esthet

January 2025

Department of Plastic, Reconstructive, and Aesthetic Surgery, Faculty of Medicine, Çukurova University, Adana, Turkey.

Background: Hydrogen sulfide (HS) is a widely studied gasotransmitter, and its protective effect against ischemia-reperfusion damage has been explored in several studies. Therefore, a requirement exists for a comprehensive study about HS effects on ischemia-reperfusion damage in flap surgery. The aim of this study is to examine the effect of hydrogen sulfide by creating ischemia-reperfusion injury in the vascular-stemmed island flap prepared from the rat groin area.

View Article and Find Full Text PDF

Sivelestat sodium protects against renal ischemia/reperfusion injury by reduction of NETs formation.

Arch Biochem Biophys

January 2025

Department of Critical Care Medicine, the First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province 150001, China; Heilongjiang Provincial Key Laboratory of Critical Care Medicine, Harbin 150001, China; Central Laboratory of The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China. Electronic address:

Background: Ischemia-reperfusion injury (IRI) often results in renal impairment. While the presence of neutrophil extracellular traps (NETs) is consistently observed, their specific impact on IRI is not yet defined. Sivelestat sodium, an inhibitor of neutrophil elastase which is crucial for NET formation, may offer a therapeutic approach to renal IRI, warranting further research.

View Article and Find Full Text PDF

Background: Myocardial ischemia-reperfusion (I/R) injury refers to cell damage that occurs as a consequence of the restoration of blood circulation following reperfusion therapy for cardiovascular diseases, and it is a primary cause of myocardial infarction. The search for nove therapeutic targets in the context of I/R injury is currently a highly active area of research. p70 ribosomal S6 kinase (S6K1) plays an important role in I/R induced necrosis, although the specific mechanisms remain unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!