Objective: The aim of this study is to investigate the effect of transdermal fentanyl (TDF) as an adjuvant to paravertebral block (PVB) for pain control after breast cancer surgery.

Patients And Methods: This randomized, double-blind trial included fifty females with breast cancer scheduled for surgery. They were randomly allocated into one of two equal groups. The TDF group used transdermal fentanyl patches (TFPs) 25 μg/h applied 10 h preoperative then PVB with 20 mL of bupivacaine 0.25% was done before induction of general anesthesia. The PVB group used placebo patches in addition to PVB the same way as TDF group. Postoperative pain was assessed with a visual analog scale (VAS) score up to 48 h. Intravenous morphine 0.1 mg/kg was given when the VAS is ≥ 3 or on patient request. The primary outcome measures were the time to first request for analgesia and the total analgesic consumption in the first 48 h.

Results: Relative to the VAS score reading was 30 min. After the end of surgery, VAS score decreased significantly in the two groups up to 48 postoperative hours and was significantly lower in TDF group up to 24 h. The time to first request of additional analgesia was significantly longer, and total dose of morphine consumption was significantly lower in TDF group ( < 0.001, and = 0.039, respectively).

Conclusion: TFPs releasing 25 μg/h is a safe and effective adjuvant to PVB after breast cancer surgery. It provides adequate analgesia with reduction of opioid consumption and minimal adverse effects.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5637412PMC
http://dx.doi.org/10.4103/sja.SJA_84_17DOI Listing

Publication Analysis

Top Keywords

breast cancer
16
tdf group
16
transdermal fentanyl
12
vas score
12
adjuvant paravertebral
8
paravertebral block
8
pain control
8
control breast
8
cancer surgery
8
randomized double-blind
8

Similar Publications

Triple-negative breast cancer (TNBC) remains a significant global health challenge, emphasizing the need for precise identification of patients with specific therapeutic targets and those at high risk of metastasis. This study aimed to identify novel therapeutic targets for personalized treatment of TNBC patients by elucidating their roles in cell cycle regulation. Using weighted gene co-expression network analysis (WGCNA), we identified 83 hub genes by integrating gene expression profiles with clinical pathological grades.

View Article and Find Full Text PDF

Background: Breast cancer screening (BCS) inequities are evident at national and local levels, and many health systems want to address these inequities, but may lack data about contributing factors. The objective of this study was to inform health system interventions through an exploratory analysis of potential multilevel contributors to BCS inequities using health system data.

Methods: The authors conducted a cross-sectional analysis within a large academic health system including 19,774 individuals who identified as Black (n = 1445) or White (n = 18,329) race and were eligible for BCS.

View Article and Find Full Text PDF

Background: To date, 11 DNA polymerase epsilon (POLE) pathogenic variants have been declared "hotspot" mutations. Patients with endometrial cancer (EC) characterized by POLE hotspot mutations (POLEmut) have exceptional survival outcomes. Whereas international guidelines encourage deescalation of adjuvant treatment in early-stage POLEmut EC, data regarding safety in POLEmut patients with unfavorable characteristics are still under investigation.

View Article and Find Full Text PDF

Multi-gene panel testing allows efficient detection of pathogenic variants in cancer susceptibility genes including moderate-risk genes such as ATM and PALB2. A growing number of studies examine the risk of breast cancer (BC) conferred by pathogenic variants of these genes. A meta-analysis combining the reported risk estimates can provide an overall estimate of age-specific risk of developing BC, that is, penetrance for a gene.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!