Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Objectives: To examine whether solvents and changing the molecular structure of 10-Methacryloyloxydecyl dihydrogen phosphate (10-MDP) affect its chemical affinity to Yttria-stabilized tetragonal zirconia polycrystals (Y-TZP).
Methods: The present work investigated the chemical affinity between Y-TZP and 10-MDP dissolved in different solvents (acetone/ethanol/water or mixture) using X-ray photoelectron spectroscopy, Fourier-transform infrared spectroscopy, and thermodynamic calculations. Shear bond strength (SBS) tests were used to evaluate the influence of different solvents on 10-MDP bonding. In addition, several phosphate ester monomer variants were created by changing the 10-MDP molecular structure. Changes included extending/shortening the spacer chain-length, and installing hydroxyl or carboxyl groups as side chains at different positions along the spacer chain. The thermodynamic parameters of the complexes formed between the 10-MDP variants and tetragonal zirconia were evaluated.
Results: The acquired data indicated that solvent is necessary for the formation of Zr-O-P bonds between 10-MDP and Y-TZP. Solvents affected the chemical affinity of 10-MDP to Y-TZP; acetone facilitated the best bonding, followed by ethanol. Changing the molecular structure of 10-MDP affected its chemical affinity to Y-TZP. The variants 15-MPDP, 12-MDDP, 6-hydroxyl-10-MDP and 6-carboxy-10-MDP all exhibited higher thermodynamic stability than 10-MDP when coordinated with tetragonal zirconia. In contrast, 2-MEP, 5-MPP, 10-hydroxyl-MDP, 10-carboxy-MDP, 5,6-dihydroxyl-10-MDP and 5,6-dicarboxy-10-MDP exhibited lower thermodynamic stability.
Significance: 10-MDP coordinates with zirconia through dissociating in solvents. Changing the molecular structure of 10-MDP theoretically affects its chemical affinity to Y-TZP.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.dental.2017.09.013 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!