Acute pancreatitis in pregnancy (APIP), which was thought to be rare, is becoming more frequent. In addition, high perinatal mortality among fetuses has been reported. Our research aimed to investigate and assess fetal lung injury in a rat model of APIP and its possible mechanisms. The APIP model was induced by sodium taurocholate in Sprague-Dawley rats during the third trimester. Sham-operated (SO) rats in late gestation were used as controls, and dynamic observation and detection in the SO and acute pancreatitis (AP) groups were performed at 3 time-points. Histological changes in the fetal lungs, as well as the maternal pancreas and placenta were assessed. The levels of serum amylase, lipase, TNF-α and IL-1β were detected in maternal rats, and the expression of surfactant proteins A, B, C and D as well as their mRNA were determined. In this study, fetal lung injury as well as maternal pancreas and placenta injuries occurred in a time-dependent manner. The levels of serum amylase, lipase and TNF-α were markedly increased in maternal rats, and the levels of surfactant proteins A, B, C and D in fetal lungs were significantly decreased in the fetal lungs of the AP group. Ultrastructure injuries and the dysregulated synthesis and secretion of pulmonary surfactant proteins were observed in the AP group. Our research suggests that fetal lung injury is involved in the rat model of APIP and that the dysregulated synthesis and secretion of pulmonary surfactant proteins play a critical role in fetal lung injury during APIP.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.prp.2017.09.016 | DOI Listing |
Exp Physiol
January 2025
Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia.
The mechanisms linking maternal asthma (MA) exposure in utero and subsequent risk of asthma in childhood are not fully understood. Pathological airway remodelling, including reticular basement membrane thickening, has been reported in infants and children who go on to develop asthma later in childhood. This suggests altered airway development before birth as a mechanism underlying increased risk of asthma in children exposed in utero to MA.
View Article and Find Full Text PDFRadiol Case Rep
March 2025
Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, State University of New York (SUNY), Downstate Health Sciences University, Brooklyn, NY, USA.
Extensive congenital pulmonary airway malformation (CPAM) of the left fetal lung and associated marked dextroposition of the fetal heart were noted at 21 weeks' gestation. The right fetal lung appeared compressed with the cardiomediastinal shift angle measuring approximately 20 degrees. Potential subsequent right pulmonary hypoplasia was considered.
View Article and Find Full Text PDFCase Rep Womens Health
March 2025
Westmead Hospital, New South Wales, Australia.
This case report describes the difficulty in predicting the outcomes for a fetus affected with both left-sided congenital diaphragmatic hernia and second-trimester pre-viable rupture of membranes. Despite the reserved prognosis at the time of diagnosis, a favourable outcome was obtained. The case highlights the relevance of established prognosticators such as the observed/expected lung/head ratio and also underscores the importance of balanced counselling and providing parents with realistic expectations and appropriate support.
View Article and Find Full Text PDFHeliyon
January 2025
Yozgat Bozok University, Faculty of Medicine, Department of Anatomy, Yozgat, Turkey.
Tartrazine finds widespread application in the realms of alimentation, pharmaceuticals, cosmetic formulations, and textile manufacturing. Tartrazine has a negative effect on human health such as hyperactivity, allergies and asthma in children. Substances such as tartrazine might effect the embryo in a kind of aspects, containing physical or mental disorders, and a decrease in the child's intellectual memory.
View Article and Find Full Text PDFStem Cell Res Ther
January 2025
Department of Nuclear Medicine, The Affiliated Hospital of Jiangsu University, Zhenjiang, 212000, Jiangsu, P. R. China.
Background: Asthma is a prevalent respiratory disease, and its management remains largely unsatisfactory. Mesenchymal stem cells (MSCs) have been demonstrated to be efficacious in reducing airway inflammation in experimental allergic diseases, representing a potential alternative treatment for asthma. Migrasomes are recently identified extracellular vesicles (EVs) generated in migrating cells and facilitate intercellular communication.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!