AI Article Synopsis

  • The study investigates how microbial contamination during meat handling shortens shelf life, focusing on beefsteak preservation techniques like aqueous ozone (AO) and electrolyzed water (EW) prior to vacuum packaging.
  • The research tracked the changes in active microbiota and associated compounds over 15 days of refrigeration, identifying Pseudomonas fragi as the dominant species, though the treatments did not significantly reduce its presence.
  • It was found that as storage time increased and oxygen levels decreased, different lactic acid bacteria became more prevalent, suggesting a complex relationship between these bacteria and spoilage compounds, while highlighting the effectiveness of RNA sequencing in understanding meat spoilage dynamics.

Article Abstract

The microbial contamination that occurs during the slaughtering process and during handling of the meat results in a shortening of the shelf-life of meat. In this study, which has had the aim of extending the shelf life of beefsteaks, pilot-scale treatments were carried out with aqueous ozone (AO) and electrolyzed water (EW) before vacuum packaging (VP). The development of the potentially active microbiota and the associated volatilome were followed over 15days of storage under refrigerated conditions (4°C), in order to define the potential long-term effects of the treatments and storage condition on microbiota. The targeted RNA-based amplicon sequencing identified Pseudomonas fragi as the most frequent species before and after the treatments with AO and EW, as well as in the untreated control. The tested treatments did not reduce the overall presence of this species, but they affected the intra-species distribution of its oligotypes, albeit slightly. With the progression of the refrigerated storage and the reduction of the oxygen availability, Lactobacillus sakei, Leuconostoc gasicomitatum and Lactococcus piscium became the dominant, potentially active, beef microbiota, as confirmed by microbiological data. When the OTU abundances and volatilome were coupled, a significant association was observed between the organic acids, esters and aldehydes and these lactic acid bacteria species. In spite of the limited effectiveness of the treatments over the short and long term, this study has provided a detailed view of beef spoilage using RNA as the sequencing target, strengthening and confirming the current knowledge based on DNA-amplicon sequencing.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijfoodmicro.2017.10.012DOI Listing

Publication Analysis

Top Keywords

aqueous ozone
8
ozone electrolyzed
8
electrolyzed water
8
treatments
5
active spoilage
4
spoilage bacteria
4
bacteria community
4
storage
4
community storage
4
storage vacuum
4

Similar Publications

Iodine in the atmosphere destroys ozone and can nucleate particles by formation of iodic acid, HIO. Recent field observations suggest iodate recycles from particles sustaining significant gas-phase IO radical concentrations (0.06 pptv) in aged stratospheric air, and in elevated dust plumes.

View Article and Find Full Text PDF

Bromine is a significant environmental threat due to its corrosive nature and contribution to ozone layer depletion. It often coexists with iodine and forms interhalogen complexes (IBr), which require an effective and selective bromine adsorption strategy. Leveraging the electrophilic nature of bromine, we designed an electron-rich thiophene-based porous organic polymer (POF-2).

View Article and Find Full Text PDF
Article Synopsis
  • * A plasma-assisted method using a falling film plasma reactor successfully achieved a 98.4% removal rate of 200 nm polystyrene nanoplastics in one hour, which improved to 99.3% after three hours, also reducing total organic carbon in the solution by 27.4%.
  • * The research found that the degradation of nanoplastics likely resulted in the creation of short polystyrene oligomers and demonstrated that plasma-assisted treatment is more effective than traditional ozonation methods for addressing nanoplastic pollution in water.
View Article and Find Full Text PDF

Green synthesis of starch/chitosan complex via ozone-mediated Schiff reaction: Structure, thermal behaviors and surface properties.

Int J Biol Macromol

January 2025

Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, PR China; School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China; Food Green Processing Technology and Intelligent Equipment Hubei Engineering Research Center, Wuhan Polytechnic University, Wuhan 430023, Hubei, PR China. Electronic address:

Ozone was used as a green and environmentally friendly initiator to directly induce a Schiff base cross-linking reaction between chitosan and waxy rice starch (CS) in the present investigation. The effects of oxidation on the structure of chitosan/starch bio-based composite, along with the cross-linked structure formation via Schiff base reaction, were investigated and confirmed using FTIR, XRD, and XPS characterization techniques. The formation of new bonds (C=N) along with other attributes imparted by the cross-linking reaction were evaluated and characterized.

View Article and Find Full Text PDF

Impact of Bulk Nanobubble Water on a TiO Solid Surface: A Case Study for Medical Implants.

Langmuir

December 2024

New Industry Creation Hatchery Center, Tohoku University, 6-6-10 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan.

Article Synopsis
  • Enhancing the wettability of medical implants is essential for better biocompatibility, and this study explores the use of ozone nanobubble water to improve titanium dental implants' surfaces.
  • Immersion in ozone nanobubble water for about 10 minutes changes implants from hydrophobic to superhydrophilic, maintaining this property for over a month, indicating effective surface alteration and cleaning.
  • The formation of nanoshells from ozone microbubbles contributes to the long-lasting hydrophilicity of the implants, suggesting that this method could be a promising approach for improving the compatibility of dental implants.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!