Background: One of the foremost causes of sudden cardiac death in the young is an inherent cardiac arrhythmia known as Long-QT syndrome (LQTS). Whereas heterozygous mutations typically lead to the Romano-Ward type of LQTS, We have provided a further evidence for the recessive transmission of a novel KCNQ1 gene mutation in two consanguineous families for the first time in Iran.

Methods: Next generation sequencing, DNA Sanger sequencing and haplotype analysis were performed for genotype determination. Twelve different in silico tools were used for predicting the variant pathogenecity along with the family and population study.

Results: A novel recessive KCNQ1 variant (p.D564G) was revealed in none of the unrelated healthy individuals but four patients in two apparently unrelated families. The variant was classified as a likely pathogenic mutation by combining the resulted criteria for the changed amino acid.

Conclusions: Identification of the novel mutation not only supports the genetic testing as a definitive diagnostic tool for detection of at risk family members, but also emphasizes its screening in Iranian LQTS patients as this mutation is very likely a founder mutation in Iran.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jelectrocard.2017.07.012DOI Listing

Publication Analysis

Top Keywords

novel recessive
8
recessive kcnq1
8
long-qt syndrome
8
mutation
6
identification characterization
4
novel
4
characterization novel
4
kcnq1 mutation
4
mutation associated
4
associated romano-ward
4

Similar Publications

Glycogen storage disease type IV (GSD IV) is a rare disease caused by a defect in glycogen branching enzyme 1 (GBE1), which played a crucial role in glycogen branching. GSD IV occurs once in approximately 1 in every 760,000 to 960,000 live births and is inherited in an autosomal recessive pattern. Early diagnosis of GSD IV is challenging due to non-specific symptoms, such as liver and spleen enlargement, which can overlap with other hematologic and hepatobiliary disorders.

View Article and Find Full Text PDF

Introduction: Glycerol-3-phosphate dehydrogenase 1 (GPD1) deficiency is an autosomal recessive disorder causing hypertriglyceridemia, hepatomegaly, fatty liver, and hepatic fibrosis in infancy. It is an under-recognized cause of pediatric steatotic liver disease (SLD) with only 36 cases reported worldwide.

Method: We analyzed the clinical profile of our five cases diagnosed by exome sequencing (ES) and reviewed the published cases till December 2023 using PubMed search.

View Article and Find Full Text PDF

A novel, dominant disease mechanism of distal renal tubular acidosis with specific variants in ATP6V1B1.

Nephrol Dial Transplant

January 2025

Paediatric Nephrology, UZ Leuven and Department of Cellular and Molecular Physiology, KUL, Leuven, Belgium.

Background And Hypothesis: ATP6V1B1 encodes a subunit of the vacuolar H+-ATPase and pathogenic variants are associated with autosomal recessive distal renal tubular acidosis (dRTA) with deafness. Heterozygous variants predicted to affect a specific amino acid, Arg394, have been recurrently reported in dRTA but their significance has been unclear. We hypothesised that these variants are associated with a dominant disease mechanism.

View Article and Find Full Text PDF

Glucose phosphate isomerase (GPI) deficiency caused by GPI gene mutations is a rare heterogenous condition that causes hereditary non-spherocytic hemolytic anemia (HNSHA). Patients who suffer from severe anemia may need more effective treatment. Here, clinical data and genetic testing results of two cases of HNSHA with GPI mutations treated with allogeneic hematopoietic stem cell transplantation (allo-HSCT) were retrospectively analyzed.

View Article and Find Full Text PDF

Objectives: Hemophilia A (HA) is an X-linked recessive inherited bleeding disorder that typically affects men. Women are usually asymptomatic carriers, and rarely presenting with severe or moderately severe phenotype. This study aims to describe a case of a 17-year-old girl with moderate HA, investigating the mechanisms of her condition and the genetic basis within her family.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!