Background: In March, 2016, a flare-up of Ebola virus disease was reported in Guinea, and in response ring vaccination with the unlicensed rVSV-ZEBOV vaccine was introduced under expanded access, the first time that an Ebola vaccine has been used in an outbreak setting outside a clinical trial. Here we describe the safety of rVSV-ZEBOV candidate vaccine and operational feasibility of ring vaccination as a reactive strategy in a resource-limited rural setting.
Methods: Approval for expanded access and compassionate use was rapidly sought and obtained from relevant authorities. Vaccination teams and frozen vaccine were flown to the outbreak settings. Rings of contacts and contacts of contacts were defined and eligible individuals, who had given informed consent, were vaccinated and followed up for 21 days under good clinical practice conditions.
Findings: Between March 17 and April 21, 2016, 1510 individuals were vaccinated in four rings in Guinea, including 303 individuals aged between 6 years and 17 years and 307 front-line workers. It took 10 days to vaccinate the first participant following the confirmation of the first case of Ebola virus disease. No secondary cases of Ebola virus disease occurred among the vaccinees. Adverse events following vaccination were reported in 47 (17%) 6-17 year olds (all mild) and 412 (36%) adults (individuals older than 18 years; 98% were mild). Children reported fewer arthralgia events than adults (one [<1%] of 303 children vs 81 [7%] of 1207 adults). No severe vaccine-related adverse events were reported.
Interpretation: The results show that a ring vaccination strategy can be rapidly and safely implemented at scale in response to Ebola virus disease outbreaks in rural settings.
Funding: WHO, Gavi, and the World Food Programme.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5700805 | PMC |
http://dx.doi.org/10.1016/S1473-3099(17)30541-8 | DOI Listing |
Dendritic cells connect innate and adaptive immune responses. This is a particularly important immune checkpoint in the case of emerging infections against which most of the population does not have preexisting antibody immunity. In this study, we sought to test whether antibody-based delivery of Ebola virus (EBOV) antigens to dendritic cells could be used as a vaccination strategy against Ebola virus disease.
View Article and Find Full Text PDFMar Drugs
January 2025
Nebraska Center for Virology, School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA.
Filoviruses, mainly consisting of the two genera of and , are enveloped negative-strand RNA viruses that can infect humans to cause severe hemorrhagic fevers and outbreaks with high mortality rates. However, we still do not have effective medicines for treating these diseases. To search for effective drugs, we have identified three marine indole alkaloids that exhibit potent activities against filovirus infection.
View Article and Find Full Text PDFGenes Genomics
January 2025
Department of Medicine, BioSystems Design Lab, College of Medicine, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Korea.
Background: This study explores the cross-fertilization of transgenic tobacco plants to produce dual-specific monoclonal antibodies (mAbs) targeting Ebola virus-like particles and HER2 proteins. We generated F plants by hybridizing individual transgenic lines expressing the anti-HER2 breast cancer VHH mAb (HV) and the H-13F6 human anti-Ebola large single chain mAb (EL).
Objective: Hybridizing transgenic plants to express dual-antibodies between different structures VHH and LSCK indicate the potential of transgenic plants as a cost-effective and scalable production system for dual targeting mAbs.
J Immunol Methods
January 2025
Institute of Biomedical Systems and Biotechnology, Peter the Great Saint Petersburg Polytechnic University, 29 Ulitsa Polytechnicheskaya, St. Petersburg 194064, Russia; Smorodintsev Research Institute of Influenza, Russian Ministry of Health, 15/17 Ulitsa Prof. Popova, St. Petersburg 197376, Russia; Institute of Experimental Medicine, 12 Ulitsa Akademika Pavlova, St. Petersburg 197376, Russia.
Background: Rapid vaccine platforms development is crucial for responding to epidemics and pandemics of emerging infectious diseases, such as Ebola. This study explores the potential of peptide vaccines that self-organize into amyloid-like fibrils, aiming to enhance immunogenicity while considering safety and cross-reactivity.
Methods: We synthesized two peptides, G33 and G31, corresponding to a segment of the Ebola virus GP2 protein, with G33 known to form amyloid-like fibrils.
Gene
January 2025
Department of Computer and Information Science (IDA), REAL, AIICS, Linköping University, Sweden; Department of Computer Science & Engineering, Techno International New Town, Kolkata, India. Electronic address:
The goal of this research work is to predict protein-protein interactions (PPIs) between the Ebola virus and the host who is at risk of infection. Since there are very limited databases available on the Ebola virus; we have prepared a comprehensive database of all the PPIs between the Ebola virus and human proteins (EbolaInt). Our work focuses on the finding of some new protein-protein interactions between humans and the Ebola virus using some state- of-the-arts machine learning techniques.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!