Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.tcm.2017.09.006 | DOI Listing |
Background: There is an urgent need for new therapeutic and diagnostic targets for Alzheimer's disease (AD). Dementia afflicts roughly 55 million individuals worldwide, and the prevalence is increasing with longer lifespans and the absence of preventive therapies. Given the demonstrated heterogeneity of Alzheimer's disease in biological and genetic components, it is critical to identify new therapeutic approaches.
View Article and Find Full Text PDFBackground: Our previous study identified that Sildenafil (a phosphodiesterase type 5 [PDE5] inhibitor) is a candidate repurposable drug for Alzheimer's Disease (AD) using in silico network medicine approach. However, the clinically meaningful size and mechanism-of-actions of sildenafil in potential prevention and treatment of AD remind unknown.
Method: We conducted new patient data analyses using both the MarketScan® Medicare with Supplemental database (n = 7.
Background: Selecting the optimal dose for clinical development is especially problematic for drugs directed at CNS-specific targets. For drugs with a novel mechanism of action, these problems are often greater. We describe Xanamem's clinical pharmacology, including the approach to dose selection and proof-of-concept studies.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Department of Neurology and Neurological Sciences Stanford University School of Medicine, Stanford, CA, USA.
Dementia patients often received one clinical diagnosis, yet most of these cases present multiple underlying pathologies. Bringing the transition from clinical-based to biological-based diagnosis holds promise with the diagnostic criteria proposed by the Alzheimer's Association (AA) Revised Criteria for Diagnosis and Staging of Alzheimer's Disease and the Neuronal Synuclein Disease Integrated Staging System (NSD-ISS). This session aims to explore the practical implications of the AA revised criteria for diagnosing and designing clinical trials in Lewy body disease (LBD).
View Article and Find Full Text PDFAlzheimers Dement
December 2024
UCSF Weill Institute for Neurosciences, San Francisco, CA, USA.
Background: Efforts to genetically reverse C9orf72 pathology have been hampered by our incomplete understanding of the regulation of this complex locus.
Method: We generated five different genomic excisions at the C9orf72 locus in a patient-derived iPSC line and a WT line (11 total isogenic lines), and examined gene expression and pathological hallmarks of C9 FTD/ALS in motor neurons differentiated from these lines. Comparing the excisions in these isogenic series removed the confounding effects of different genomic backgrounds and allowed us to probe the effects of specific genomic changes.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!