The impact of interferon-regulatory factors to macrophage differentiation and polarization into M1 and M2.

Immunobiology

Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, Moscow, Russia; Institute for Atherosclerosis Research, Skolkovo Innovative Center, Moscow, Russia; Faculty of Medicine, School of Medical Sciences, University of New South Wales, NSW, Sydney, Australia; School of Medicine, University of Western Sydney, Campbelltown, NSW, Australia. Electronic address:

Published: January 2018

The mononuclear phagocytes control the body homeostasis through the involvement in resolving tissue injury and further wound healing. Indeed, local tissue microenvironmental changes can significantly influence the functional behavior of monocytes and macrophages. Such microenvironmental changes for example occur in an atherosclerotic plaque during all progression stages. In response to exogenous stimuli, macrophages show a great phenotypic plasticity and heterogeneity. Exposure of monocytes to inflammatory or anti-inflammatory conditions also induces predominant differentiation to proinflammatory (M1) or anti-inflammatory (M2) macrophage subsets and phenotype switch between macrophage subsets. The phenotype transition is accompanied with great changes in the macrophage transcriptome and regulatory networks. Interferon-regulatory factors (IRFs) play a key role in hematopoietic development of monocytes, their differentiation to macrophages, and regulating macrophage maturation, phenotypic polarization, phenotypic switch, and function. Of 9 IRFs, at least 3 (IRF-1, IRF-5, and IRF-8) are involved in the commitment of proinflammatory M1 whereas IRF-3 and IRF-4 control M2 polarization. The role of IRF-2 is context-dependent. The IRF impact on macrophage phenotype plasticity and heterogeneity is complex and involves activating and repressive function in triggering transcription of target genes.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.imbio.2017.10.005DOI Listing

Publication Analysis

Top Keywords

interferon-regulatory factors
8
microenvironmental changes
8
plasticity heterogeneity
8
macrophage subsets
8
subsets phenotype
8
macrophage
6
impact interferon-regulatory
4
factors macrophage
4
macrophage differentiation
4
differentiation polarization
4

Similar Publications

[Viral-epigenetic hypothesis of Parkinson's disease etiopathogenesis.].

Adv Gerontol

January 2025

Bashkir State Medical University, 3 Lenin str., Ufa 450008, Russian Federation, e-mail:

Data accumulated in scientific literature indicate that Parkinson's disease develops after infections caused by SARS-CoV-2, West Nile, Coxsackie, St. Louis viruses, Japanese encephalitis B, hepatitis B and C, influenza A, HIV, herpes viruses, flaviviruses. Neuroinvasive West Nile viruses and HIV activate expression of alpha-synuclein.

View Article and Find Full Text PDF

Introduction: Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by an overactive immune response, particularly involving excessive production of type I interferons. This overproduction is driven by the phosphorylation of IRF7, a crucial factor in interferon gene activation. Current treatments for SLE are often not very effective and can have serious side effects.

View Article and Find Full Text PDF

Background: Melanoma cells frequently dedifferentiate in response to inflammation which can increase responses to certain cytokines. Interferon-γ (IFNγ) is an integral part of the anti-tumor immune response and can directly induce both differentiational changes and expression of immunosuppressive proteins in melanoma cells. How the differentiation status of melanoma cells affects IFNγ responses remains unclear.

View Article and Find Full Text PDF

OGT-mediated O-GlcNAcylation regulates macrophage polarization in heart failure via targeting IRF1.

BMC Cardiovasc Disord

December 2024

Department of General Medicine, The Affiliated Hospital of Inner Mongolia Medical University, No.1, Tongdao North Road, Huimin District, Hohhot, Inner Mongolia, 010050, China.

Background: Heart failure (HF) is a syndrome with complex etiology and high mortality in the world. Macrophage-related inflammation is involved in HF development. O-GlcNAcylation is a post-translational modification that affects pathological processes.

View Article and Find Full Text PDF

Objective: Of this study was to analyse the correlation of gene polymorphisms with clinical and laboratory data of paediatric patients with B-lineage acute lymphoblastic leukaemia with prognostically unfavourable features.

Methods: A study of 200 children with B-lineage acute lymphoblastic leukaemia (B-ALL) treated with polychemotherapy programmes was conducted. Analysis by sex revealed a statistically insignificant predominance of the group of boys over girls (54%).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!