Light-cured Tricalcium Silicate Toxicity to the Dental Pulp.

J Endod

Aix Marseille Univ, CNRS, ISM, Inst Movement Sci, Marseille, France. Electronic address:

Published: December 2017

Introduction: Numerous studies reported dentin bridge formation after pulp capping with tricalcium silicates. By contrast, pulp capping with resins leads to pulp toxicity and inflammation. Hybrid materials made up of tricalcium silicates and resins have also been developed to be used in direct pulp capping. This work was designed to study the consequences of adding resins to tricalcium silicates by investigating TheraCal (BISCO, Lançon De Provence, France) and Biodentine (Septodont, Saint Maur des Fosses, France) interactions with the dental pulp.

Methods: Media conditioned with the biomaterials were used to analyze pulp fibroblast proliferation using the MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide) test and proinflammatory cytokine interleukin 8 (IL-8) secretion using the enzyme-linked immunosorbent assay. The effects of conditioned media on dentin sialoprotein (DSP) and nestin expression by dental pulp stem cells (DPSCs) were investigated by immunofluorescence. The materials' interactions with the vital pulp were investigated using the entire tooth culture model.

Results: TheraCal-conditioned media significantly decreased pulp fibroblast proliferation, whereas no effect was observed with Biodentine. When DPSCs were cultured with Biodentine-conditioned media, immunofluorescence showed an increased expression of DSP and nestin. This expression was lower with TheraCal, which significantly induced proinflammatory IL-8 release both in cultured fibroblasts and entire tooth cultures. This IL-8 secretion increase was not observed with Biodentine. Entire tooth culture histology showed a higher mineralization with Biodentine, whereas significant tissue disorganization was observed with TheraCal.

Conclusions: Within the limits of these preclinical results, resin-containing TheraCal cannot be recommended for direct pulp capping.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.joen.2017.07.010DOI Listing

Publication Analysis

Top Keywords

pulp capping
16
tricalcium silicates
12
entire tooth
12
pulp
10
dental pulp
8
direct pulp
8
pulp fibroblast
8
fibroblast proliferation
8
il-8 secretion
8
dsp nestin
8

Similar Publications

Objective: This study aimed to investigate and compare the histological response of rabbit dental pulp after direct pulp capping with 3 different materials: mineral trioxide aggregate (MTA), nanoparticles of fluorapatite (Nano-FA), and nanoparticles of hydroxyapatite (Nano-HA) after 4 and 6-week time intervals.

Material And Methods: A total of 72 upper and lower incisor teeth from 18 rabbits were randomly categorized into 3 groups)24 incisors from six rabbits each. MTA Group: teeth were capped with MTA.

View Article and Find Full Text PDF

Background: This study aimed to assess the histological and radiographic effects of sodium hexametaphosphate (SHMP) as a direct pulp capping (DPC) agent in immature permanent dog premolars.

Methods: A split-mouth design was employed with three healthy 4-month-old Mongrel dogs, each having 36 premolars. The premolars were randomly assigned to either SHMP or MTA.

View Article and Find Full Text PDF

Lignosulfonate as a versatile regulator for the mediated synthesis of Ag@AgCl nanocubes.

Nanoscale

January 2025

State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin Key Laboratory of Pulp and Paper, China Light Industry Key Laboratory of Papermaking and Biorefinery, Tianjin University of Science and Technology, No. 29, 13th Street, TEDA, Tianjin 300457, P. R. China.

The remarkable catalytic activity, optical properties, and electrochemical behavior of nanomaterials based on noble metals (NM) are profoundly influenced by their physical characteristics, including particle size, morphology, and crystal structure. Effective regulation of these parameters necessitates a refined methodology. Lignin, a natural aromatic compound abundant in hydroxyl, carbonyl, carboxyl, and sulfonic acid groups, has emerged as an eco-friendly surfactant, reducing agent, and dispersant, offering the potential to precisely control the particle size and morphology of NM-based nanomaterials.

View Article and Find Full Text PDF

Assessment of Silver-Copper Co-Loaded Mesoporous Bioactive Glass as an Advanced Pulp-Capping Material.

J Dent

December 2024

Department of Fragrance and Cosmetic Science, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan; Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan. Electronic address:

Objectives: To evaluate the multifunctionality of silver-copper co-loaded mesoporous bioactive glass (MBG), with the goal of developing an advanced pulp-capping material.

Methods: The synthesis of materials was conducted using the sol-gel method, following the approach described in previous studies but with some modifications. The composition included 80 mol% SiO₂, 15 mol% CaO, and 5 mol% P₂O₅, with additional components of 5 mol% silver, 5 mol% copper, or 1 mol% silver combined with 4 mol% copper, designated as Ag5/80S, Cu5/80S, or Ag1Cu4/80S, respectively.

View Article and Find Full Text PDF

Dental caries is one of the most common health issues worldwide arising from the complex interactions of bacteria. In response to harmful stimuli, desirable outcome for the tooth is the formation of tertiary dentin, a protective reparative process that generates new hard tissue. This reparative dentinogenesis is associated with significant inflammation, which triggers the recruitment and differentiation of dental pulp stem cells (DPSCs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!