Objective: Low iodine intakes are associated with goitre and other iodine-deficiency disorders (IDD) that have affected billions of people worldwide. We aimed to assess total goitre rate (TGR) and urinary iodine concentration (UIC) in schoolchildren between 2007 and 2015, percentage of iodized salt consumption by households, and salt iodine content at production, distribution and household levels in north-west Iran. Design/Setting/Subjects UIC assessed among schoolchildren in nine consecutive years; 240 schoolchildren aged 8-10 years selected by systematic random sampling each year in the West Azerbaijan Province.
Results: Median UIC was >100 μg/l in all years. More than 50 % of children had iodine deficiency (UIC≤99 μg/l) in 2010 and 2011, while this rate was approximately 15-35 % in other years. Proportion with UIC below 50 μg/l was <20 % in all years except 2010 and 2011. Excessive UIC (≥300 μg/l) rate was between 5·4 and 27·5 %. TGR decreased from 44 % in 1996 to 7·6 % and 0·4 % in 2001 and 2007, respectively. Regular surveys from 2002 to 2015 showed that 98 % or more of households consumed iodized salt. Iodine level ≥20 ppm was observed in 87·5, 83 and 73 % of salt at production, distribution and household level, respectively (data from national study in 2007). The last national study in 2014 showed that median iodine level in household salt was 27 ppm.
Conclusions: Our focused data suggest that the universal salt iodization programme is improving the iodine status of schoolchildren in the West Azerbaijan Province of Iran. Reduction of TGR to less than 5 % in schoolchildren indicates successful elimination of IDD as a major public health problem.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10260855 | PMC |
http://dx.doi.org/10.1017/S1368980017002609 | DOI Listing |
Int J Mol Sci
January 2025
Department of Human Nutrition and Dietetics, Faculty of Food Technology, University of Agriculture in Krakow, al. Mickiewicza 21, 31-120 Krakow, Poland.
Iodine is a key micronutrient essential for the synthesis of thyroid hormone, which regulates metabolic processes and maintains overall health. Despite its importance, iodine deficiency is a global health issue, leading to disorders such as goiter, hypothyroidism, and developmental abnormalities. Biofortification of crops with iodine is a promising strategy to enhance the dietary iodine intake, providing an alternative to iodized salt.
View Article and Find Full Text PDFJ Trace Elem Med Biol
January 2025
Reproduction, Mother and Child Health Unit, Research Center of the CHU de Québec, Université Laval, Québec City, Québec, Canada; Department of Obstetrics, Gynecology and Reproduction, CHU de Québec-Université Laval, Québec City, Québec, Canada. Electronic address:
Background: Adequate maternal iodine intake is important for fetal brain development. Based on iodine intakes of non-pregnant females of reproductive age from the Canadian Health Measures Survey (2016 -2017) it can be extrapolated that most pregnant females in Canada will not meet iodine requirements without supplementation.
Objectives: To assess iodine intakes of 500 pregnant, nulliparous females from Québec, Canada and report on use of multivitamin/mineral (MVM) supplements and coverage of iodized salt.
Zhonghua Yu Fang Yi Xue Za Zhi
January 2025
Department of Environmental Health, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou310051, China.
To analyze the iodine nutrition status and its related factors among adults aged 18 years and above in Zhejiang Province in 2022. A multistage stratified sampling method was used to select 4 320 adults aged 18 years and above from 16 on-site survey sites in Zhejiang Province for the study. A questionnaire was used to investigate the general demographic information and personal dietary characteristics of the study participants.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Key Laboratory for Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China.
For rechargeable zinc-iodine batteries, the low electrical conductivity of iodine and the easy dissolution of polyiodide in the electrolyte need to be carefully managed to ensure efficient operation. Herein, we introduce an organic iodized salt, formamidinium iodide (CHNI), to modulate the solvation structure of iodide ion, aimed to improve the reaction kinetics of iodine for reversible redox conversion. The participation of formamidinium ion (FA) into solvation structure leads to the formation of the favorable FAIZn(HO) complex, facilitating easier desolvation for redox conversion with iodine.
View Article and Find Full Text PDFACS Nano
January 2025
Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, China.
While many cathode materials have been developed for mild electrolyte-based Zn batteries, the lack of cathode materials hinders the progress of alkaline zinc batteries. Halide iodine, with its copious valence nature and redox possibilities, is considered a promising candidate. However, energetic alkaline iodine redox chemistry is impeded by an alkali-unadapted I element cathode and thermodynamically unstable reaction products.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!