The effect of macro- (NHCl) (set I) and micro-nutrients (Fe, Ni, Co and Mo) (set II) addition on chemical oxygen demand (COD) solubilisation during anaerobic mono-digestion of grass silage was investigated in two sets of leach bed reactor experiments at 35°C. Results showed that addition of NHCl and micro-nutrients improved COD solubilisation by 18% (0.56 g SCOD g volatile solids) and 7% (0.45 g SCOD g VS), respectively than control. About 20-50% of the added micro-nutrients were bioavailable in the produced leachates, while the rest (50-80%) were adsorbed onto the grass silage. Results of biological methane potential assays showed that, specific methane yields of grass silage were improved by 17% (0.36 ± 0.02 m CH kg VS) when NHCl was supplemented while Fe, Ni, Co and Mo addition improved methane yields by 15% (0.33 ± 0.005 m CH kg VS) when compared to control.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/09593330.2017.1393462 | DOI Listing |
Front Microbiol
December 2024
Zhanjiang Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, China.
The effect of HMC4 produced by protoplast fusion on silage was studied. The silage formula was composed of heterozygote HMC4 (Group C), parent Lactobacillus (Group A) and a combination of two parents (Group B). The fermentation quality and microbial composition of each batch of silage were evaluated.
View Article and Find Full Text PDFJ Dairy Sci
December 2024
Department of Animal and Veterinary Sciences, AU Viborg - Research Centre Foulum, Aarhus University, Blichers Allé 20, 8830 DK-Tjele, Denmark.
The objective of this study was to investigate the effect of combining different doses of 3-nitrooxypropanol (3-NOP) with varying forage composition on gas emission and production performance of dairy cows. Seventy-two lactating Danish Holstein cows (36 primiparous and 36 multiparous) were enrolled in a continuous randomized block design with an initial 2-week covariate period followed by application of treatments for 12 consecutive weeks. Initial DMI and ECM yield were 23.
View Article and Find Full Text PDFJ Dairy Sci
December 2024
Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, PO Box 5003, 1432 Ås, Norway. Electronic address:
The aim of this study was to examine how silages from different grassland species and harvesting frequencies affect feed intake, milk production, and methane (CH) emission in dairy cows. We hypothesized that cows consuming silages of more frequent harvest, grass species with greater organic matter digestibility and legumes with lower NDFom concentration would have greater silage dry matter intake and milk yield and thereby lower CH yield and intensity. Forty Norwegian Red cows were allocated to 5 treatments in a cyclic changeover design with 4 21-d periods (14 d of adaptation, 7 d of data collection).
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Grass Industry Collaborative Innovation Research Center, Hulunbuir University, Hulunber, China. Electronic address:
Background: Ensiling technology shows promise for preserving and providing high-quality forage. However, the high polymeric content and compact properties of fiber result in low biodigestibility. This study aimed to evaluate the use of ensiling technology for storing wheat straw.
View Article and Find Full Text PDFPLoS One
December 2024
Animal and Grassland Research and Innovation Centre, Teagasc Moorepark, Fermoy, Co. Cork, Ireland.
Seasonal-calving pasture-based systems characterize Irish dairy production. During the dry period, cows are housed and offered predominantly grass silage, providing unique transition cow management opportunities. This study aimed to describe transition period disease incidence and management strategies reported by farmers, and to evaluate their associations with herd size and calving pattern to inform and guide research activities and national advisory.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!