Podocyte insulin sensitivity is critical for glomerular function, and the loss of appropriate insulin signaling leads to alterations and disorders featuring diabetic nephropathy. Energy-sensing pathways, such as AMP-dependent protein kinase (AMPK) and protein deacetylase SIRT1, have been shown to play an important role in insulin resistance. The absence of a stimulating effect of insulin on glucose uptake into podocytes after exposure to hyperglycemic conditions has been demonstrated to be related to a decreased level and activity of SIRT1 protein, leading to reduced AMPK phosphorylation. The present work was undertaken to investigate metformin's ability to restore the insulin responsiveness of podocytes by regulating SIRT1 and AMPK activities. Primary rat podocytes cultured with standard or high glucose concentrations for 5days were transfected with siRNAs targeting SIRT1, AMPKα1, or AMPKα2. SIRT1 activity was measured by a fluorometric method. Insulin-stimulated changes in glucose uptake were used to detect insulin resistance. Podocyte permeability was measured by a transmembrane albumin flux assay to examine podocytes functioning. Our results demonstrated that metformin activated SIRT1 and AMPK, prevented hyperglycemia-induced reduction of SIRT1 protein levels, ameliorated glucose uptake into podocytes, and decreased glomerular filtration barrier permeability. Furthermore, metformin activated AMPK in a SIRT1-independent manner, as the increase in AMPK phosphorylation after metformin treatment was not affected by SIRT1 downregulation. Therefore, the potentiating effect of metformin on insulin-resistant podocytes seemed to be dependent on AMPK, as well as SIRT1 activity, establishing multilateral effects of metformin action.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbadis.2017.10.014DOI Listing

Publication Analysis

Top Keywords

insulin resistance
12
sirt1 ampk
12
glucose uptake
12
sirt1
10
ampk
8
uptake podocytes
8
sirt1 protein
8
ampk phosphorylation
8
sirt1 activity
8
metformin activated
8

Similar Publications

Effects of the Mediterranean Diet on the Components of Metabolic Syndrome Concerning the Cardiometabolic Risk.

Nutrients

January 2025

Internal Medicine and Stroke Care Ward, Department of Promoting Health, Maternal-Infant, Excellence and Internal and Specialized Medicine (Promise) G. D'Alessandro, University of Palermo, 90127 Palermo, Italy.

Metabolic syndrome is a cluster of risk factors, including abdominal obesity, insulin resistance, hypertension, dyslipidemia (intended as an increase in triglyceride levels and a reduction in HDL cholesterol levels), and elevated fasting glucose, that increase the risk of cardiovascular disease and type 2 diabetes. With the rising prevalence of metabolic syndrome, effective dietary interventions are essential in reducing these health risks. The Mediterranean diet, rich in fruits, vegetables, whole grains, legumes, nuts, and olive oil and moderate in fish and poultry, has shown promise in addressing metabolic syndrome and its associated components.

View Article and Find Full Text PDF

Objective: This study aims to identify whether the development of insulin resistance (IR) induced by high selenium (Se) is related to serine deficiency via the inhibition of the de novo serine synthesis pathway (SSP) by the administrations of 3-phosphoglycerate dehydrogenase (PHGDH) inhibitor (NCT503) or exogenous serine in mice.

Method: forty-eight male C57BL/6J mice were randomly divided into four groups: adequate-Se (0.1 mgSe/kg), high-Se (0.

View Article and Find Full Text PDF

The Role of Lifestyle Interventions in PCOS Management: A Systematic Review.

Nutrients

January 2025

Division of Reproductive Child Health and Nutrition, Indian Council of Medical Research (ICMR), New Delhi 110029, India.

Polycystic ovary syndrome (PCOS) is one of the most prevalent endocrine disorders among reproductive-aged women. It is characterized by hyperandrogenism, anovulation, and polycystic ovaries. Lifestyle changes are suggested as first-line interventions in managing PCOS.

View Article and Find Full Text PDF

Potential Effect of Cinnamaldehyde on Insulin Resistance Is Mediated by Glucose and Lipid Homeostasis.

Nutrients

January 2025

Instituto de Bioeletricidade Celular (IBIOCEL): Ciência & Saúde, Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Rua João Pio Duarte Silva, 241, Sala G 301, Florianópolis 88038-000, SC, Brazil.

Diabetes mellitus is a metabolic syndrome that has grown globally to become a significant public health challenge. Hypothesizing that the plasma membrane protein, transient receptor potential ankyrin-1, is a pivotal target in insulin resistance, we investigated the mechanism of action of cinnamaldehyde (CIN), an electrophilic TRPA1 agonist, in skeletal muscle, a primary insulin target. Specifically, we evaluated the effect of CIN on insulin resistance, hepatic glycogen accumulation and muscle and adipose tissue glucose uptake.

View Article and Find Full Text PDF

The Effect of the 14:10-Hour Time-Restricted Feeding (TRF) Regimen on Selected Markers of Glucose Homeostasis in Diet-Induced Prediabetic Male Sprague Dawley Rats.

Nutrients

January 2025

Department of Human Physiology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa.

Background: Prediabetes is a condition that often precedes the onset of type 2 diabetes mellitus (T2DM). Literature evidence indicates that prediabetes is reversible, making it an important therapeutic target for preventing the progression to T2DM. Several studies have investigated intermittent fasting as a possible method to manage or treat prediabetes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!