Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Object: Pathophysiological mechanisms underlying multiple sclerosis (MS) lesion formation, including inflammation, demyelination/remyelination and axonal damage, and their temporal evolution are still not clearly understood. To this end, three acute white matter lesions were monitored using a weekly multimodal magnetic resonance (MR) protocol.
Materials And Methods: Three untreated patients with early relapsing-remitting MS and one healthy control subject were followed weekly for two months. MR protocol included conventional MR imaging (MRI), diffusion tensor imaging (DTI), and localized MR spectroscopy (MRS), performed on the largest gadolinium-enhancing lesion, selected at the first exam.
Results: Mean diffusivity increased and fractional anisotropy decreased in lesions compared to healthy control. Cho/Cr ratios remained elevated in lesions throughout the follow-up. In contrast, temporal profiles of mI/Cr ratios varied between patients' lesions. For patient 1, mI/Cr ratios were already elevated at the beginning of the follow-up. Patients 2 and 3 ratios increase was delayed by two and five weeks. Blood-brain barrier (BBB) recovery occurred after three weeks.
Conclusion: This multimodal MR follow-up highlighted the complementary role of DTI and MRS in identifying temporal relationships between BBB disruption, inflammation, and demyelination. Diffusion metrics showed high sensitivity to detect inflammatory processes. The different temporal profiles of mI suggested a potential better specificity to monitor pathological mechanisms occurring after lesion formation, such as glial proliferation and remyelination.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.neurad.2017.06.010 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!