Unlabelled: Gastric cancer is the fifth most common malignant neoplasia and the third leading cause of cancer death worldwide. Mac-Cormick et al. recently showed the importance of considering the anatomical region of the tumor in proteomic gastric cancer studies; more differences were found between distinct anatomical regions than when comparing healthy versus diseased tissue. Thus, failing to consider the anatomical region could lead to differential proteins that are not disease specific. With this as motivation, we compared the proteomic profiles of intestinal and diffuse adenocarcinoma from the same anatomical region, the corpus. To achieve this, we used isobaric labeling (iTRAQ) of peptides, a 10-step HILIC fractionation, and reversed-phase nano-chromatography coupled online with a Q-Exactive Plus mass spectrometer. We updated PatternLab to take advantage of the new Comet-PEFF search engine that enables identifying post-translational modifications and mutations included in neXtProt's PSI Extended FASTA Format (PEFF) metadata. Our pipeline then uses a text-mining tool that automatically extracts PubMed IDs from the proteomic result metadata and drills down keywords from manuscripts related with the biological processes at hand. Our results disclose important proteins such as apolipoprotein B-100, S100 and 14-3-3 proteins, among many others, highlighting the different pathways enriched by each cancer type.
Significance: Gastric cancer is a heterogeneous and multifactorial disease responsible for a significant number of deaths every year. Despite the constant improvement of surgical techniques and multimodal treatments, survival rates are low, mostly due to limited diagnostic techniques and late symptoms. Intestinal and diffuse types of gastric cancer have distinct clinical and pathological characteristics; yet little is known about the molecular mechanisms regulating these two types of gastric tumors. Here we compared the proteomic profile of diffuse and intestinal types of gastric cancer from the same anatomical location, the corpus, from four male patients. This methodological design aimed to eliminate proteomic variations resulting from comparison of tumors from distinct anatomical regions. Our PEFF-tailored proteomic pipeline significantly increased the identifications as when compared to previous versions of PatternLab.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jprot.2017.10.005 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!