Purpose: To assess the feasibility and safety of concomitant intra-articular (IA) knee injection of mesenchymal stem cells (MSCs) and platelet-rich plasma (PRP) under fluoroscopic guidance to treat patellofemoral osteoarthritis (OA).

Materials And Methods: This prospective study included 19 consecutive patients referred for fluoroscopically guided IA MSC and PRP injection for symptomatic patellofemoral chondropathy in which conservative treatment had failed. Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) score and magnetic resonance (MR) data, including T2 mapping sequence, were prospectively collected before and 6 months after treatment. Clinical data without MR imaging were collected until 12 months after the procedure.

Results: WOMAC scores were significantly lower after IA injection of MSCs and PRP at 6 months and during 12-months follow-up compared with baseline (mean score decreased from 34.3 to 14.2; P < .0018). Patients reported no complications. Concerning MR imaging follow-up, there were no significant differences in grade, surface, or T2 value of the chondral lesions (P > .375).

Conclusions: IA injection of MSCs and PRP in early patellofemoral OA appears to allow functional improvement.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jvir.2017.08.004DOI Listing

Publication Analysis

Top Keywords

injection mesenchymal
8
mesenchymal stem
8
stem cells
8
platelet-rich plasma
8
treat patellofemoral
8
patellofemoral osteoarthritis
8
collected months
8
injection mscs
8
mscs prp
8
intra-articular injection
4

Similar Publications

Objective: Autoimmune diseases are systemic conditions that can have negative effects on wound healing. The objective of the present study was to investigate the efficacy of combining bone marrow-derived mesenchymal stem cells (BM-MSCs), acellular dermal matrix (ADM), split-thickness skin graft (STSG), and negative-pressure wound therapy (NPWT) for treating patients with autoimmune diseases and chronic non-healing wounds.

Methods: Thirty-four patients with autoimmune diseases and non-healing chronic wounds of the lower extremities between 2012 and 2023 were included in the study.

View Article and Find Full Text PDF

Injectable bioresponsive bone adhesive hydrogels inhibit NLRP3 inflammasome on demand to accelerate diabetic fracture healing.

Biomaterials

December 2024

Guangzhou Key Laboratory of Spine Disease Prevention and Treatment, Department of Orthopaedic Surgery, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510150, PR China. Electronic address:

Diabetes is associated with excessive inflammation, which negatively impacts the fracture healing process and delays bone repair. Previously, growing evidence indicated that activation of the nod-like receptor (NLR) family, such as nod-like receptor thermal protein domain-associated protein 3 (NLRP3) inflammasome induces a vicious cycle of chronic low-grade inflammatory responses in diabetic fracture. Here, we describe the synthesis of a bone adhesive hydrogel that can be locally injected into the fracture site and releases a natural inhibitor of NLRP3 (rutin) in response to pathological cue reactive oxygen species activity (ROS).

View Article and Find Full Text PDF

Bone tissue engineering is a technique that simulates the bone tissue microenvironment by utilizing cells, tissue scaffolds, and growth factors. The collagen hydrogel is a three-dimensional network bionic material that has properties and structures comparable to those of the extracellular matrix (ECM), making it an ideal scaffold and drug delivery system for tissue engineering. The clinical applications of this material are restricted due to its low mechanical strength.

View Article and Find Full Text PDF

Objectives: To investigate the inhibitory effect of Danshen Injection on endothelial-mesenchymal transition (EndMT) induced by peritoneal dialysis fluid in HMrSV5 cells and the role of the TGF‑β/Smad signaling pathway in mediating this effect.

Methods: HMrSV5 cells cultured in 40% peritoneal dialysis solution for 72 h to induce EndMT were treated with 0.05%, 0.

View Article and Find Full Text PDF

Background: Premature ovarian insufficiency (POI) is a refractory disease that severely affects female fertility. The PERK/eIF-2α/ATF4/CHOP pathway is one of the classical pathways involved in the unfolded protein response to endoplasmic reticulum stress by regulating protein synthesis and promoting apoptosis. This study aimed to investigate the functional role and mechanism of human umbilical cord mesenchymal stem cells (hUCMSCs) in the POI animal model through the PERK/eIF-2α/ATF4/CHOP pathway.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!