A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Catechin loaded PLGA submicron-sized fibers reduce levels of reactive oxygen species induced by MWCNT in vitro. | LitMetric

Catechin loaded PLGA submicron-sized fibers reduce levels of reactive oxygen species induced by MWCNT in vitro.

Eur J Pharm Biopharm

Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Biomimetic Membranes and Textiles, Lerchenfeldstrasse 5, St. Gallen 9014, Switzerland. Electronic address:

Published: January 2018

Reactive oxygen species (ROS) are common products of normal aerobic cellular metabolism, but high levels of ROS lead to oxidative stress and cellular damage. Therefore, effective antioxidant therapies are needed to prevent ROS overproduction. This study reports the development of poly(l-lactide-co-glycolide) (PLGA) bicomponent fibers loaded with selected amounts of the natural polyphenolic antioxidant catechin. Thereby a novel route based on emulsion electrospinning is investigated to obtain tailored and sustained release rates for chatechin. The activity of the released catechin was assessed for its influence on multi-walled carbon nanotube (MWCNT) induced formation of reactive oxygen species (ROS) in the human alveolar epithelial the cell line A549. Homogenous fiber morphologies were obtained at specified ranges of PLGA concentrations within the emulsions including the formation of a core - sheath structure localizing the drug within the fiber core. In vitro measurements of the delivery showed moderate burst release kinetics in a first phase followed by a linear and smooth release at long term. In combination with polymer degradation studies a mostly diffusion controlled release mechanism was revealed exhibiting only marginal degradation of the polymer during the time span of the drug delivery. As a proof of concept, the activity of released catechin in A549 cells stimulated with MWCNTs was determined and revealed a high reduction of ROS production in a dose dependent manner. This effect diminishes over time indicating a depletion of catechin.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejpb.2017.10.009DOI Listing

Publication Analysis

Top Keywords

reactive oxygen
12
oxygen species
12
species ros
8
activity released
8
released catechin
8
catechin
5
ros
5
catechin loaded
4
loaded plga
4
plga submicron-sized
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!